Errata

Title & Document Type: 8640B Signal Generator Operating & Service Manual

Manual Part Number: 08640-90017

Revision Date: January 1974

HP References in this Manual

This manual may contain references to HP or Hewlett-Packard. Please note that Hewlett-Packard's former test and measurement, semiconductor products and chemical analysis businesses are now part of Agilent Technologies. We have made no changes to this manual copy. The HP XXXX referred to in this document is now the Agilent XXXX. For example, model number HP8648A is now model number Agilent 8648A.

About this Manual

We've added this manual to the Agilent website in an effort to help you support your product. This manual provides the best information we could find. It may be incomplete or contain dated information, and the scan quality may not be ideal. If we find a better copy in the future, we will add it to the Agilent website.

Support for Your Product

Agilent no longer sells or supports this product. You will find any other available product information on the Agilent Test & Measurement website:

www.tm.agilent.com

Search for the model number of this product, and the resulting product page will guide you to any available information. Our service centers may be able to perform calibration if no repair parts are needed, but no other support from Agilent is available.

OPERATING AND SERVICE MANUAL

SIGNAL GENERATOR 8640B

SERIAL NUMBERS

This manual applies directly to instruments with serial numbers prefixed 1324A.

With changes described in Section VII, this manual also applies to instruments with serial numbers prefixed 1229A, 1244A, 1245A, 1246A, 1249A, 1251A, 1303A, 1310A, 1313A, 1316A, 1322A, and 1323A.

For additional important information about serial numbers see INSTRUMENTS COVERED BY MAN-UAL in Section I.

CopyrightHEWLETT-PACKARD COMPANY19741501PAGE MILL ROAD, PALO ALTO, CALIFORNIA, U.S.A.

MANUAL PART NO. 08640-90017 Operating Information Supplement Part No. 08640-90018 Microfiche Part No. 08640-90019

Printed: JANUARY 1974

The second se

CONTENTS

Sect	ion	Page
I	GENERAL INFORMATION	. 1-1
	1-1. Introduction	
	1-7. Instruments Covered by Manual	. 1-1
	1-12. General Description	. 1-2
	1-17. Performance Characteristics	. 1-2
	1-18. Spectral Purity	. 1-2
	1-24. Frequency Counter	. 1-3
	1-29. Phase-Lock Mode	. 1-3
	1-35. Amplitude Modulation	. 1-4
	1-38. Pulse Modulation	. 1-4
	1-41. Frequency Modulation	
	1-44. Standard and Optional Audio	
	Oscillators	. 1-5
	1-47. Multi-function Meter and	
	Annunciators	. 1-5
	1-53 Output Level	1-5
	1-57. Options	. 1-6
	1-57. Options . <	. 1-6
	1-66. Equipment Available	. 1.6
	1-73. Warranty	. 1.7
	1-75. Test Equipment Required	. 1-7
	a ver root adaipment rodanca	. 1-7
II	INSTALLATION	. 2-1
	2-1. Introduction	. 2-1 . 2-1
		. 2-1
	2-3. Initial Inspection	
	2-5. Preparation for Use2-6. Power Requirements	. 2-1 . 2-1
	2-8. Line Voltage Selection	
	2-0. Line voltage Selection	. 2-2
	2-11. Power Cable	. 2-2
	2-13. Mating Connectors 2-15. Operating Environment	. 2-3
	2-13. Operating Environment	. 2-3
		. 2-3
		. 2-3
	2-22. Storage and Shipment	. 2-3
		. 2-3
	2-25. Packaging	. 2-3
ш	OPERATION	0.1
	3-3. Panel Features	. 3-1
		. 3-1
	3-7. Operating Instructions	. 3-1
	5-5. Operator's maintenance	. 3-1
IV	PERFORMANCE TESTS	4 1
1 4		. 4-1
	4-1. Introduction	. 4-1
	4-3. Equipment Required	. 4-1
		. 4-1
	4-7. Test Procedures	. 4-1
	4-11. Frequency Range Test	. 4-2
	4-12. Frequency Accuracy and Fine Tune Test	. 4-3
	4-13. Frequency Stability Vs Time and	
	Restabilization Time Test	. 4-5
	4-14. Frequency Stability Vs Temperature	• -
	Test	. 4-7
	4-15. Frequency Stability Vs Line	
	Voltage Test	. 4-8

Section	Page
4-16. Frequency Stability Vs Load, Level,	
and Mode Test	4-9
4-17. Harmonics Test	4-11
4-18. Sub-Harmonics and Non-Harmonic	
Spurious Test	4-13
4-19. Single Sideband Phase Noise Test	4.15
4-20. Single Sideband Broadband Noise	
Floor Test	4-17
4-21. Residual AM Test	4-20 4-21
4-23. Output Level Accuracy Test	4-21
(Abbreviated)	4-24
4-24. Output Level Accuracy Test	7-47
(Complete)	4-29
(Complete)	4-36
4-26. Output Impedance Test (In Band)	4-37
4-27. Output Impedance Test (Out of Band).	4-39
4-28. Auxiliary Output Test	4-41
4-49. Output Leakage Test	4-42
4-30. Internal Modulation Oscillator Test	4-44
4-31. Internal Modulation Oscillator	
Distortion Test (Option 001)	4-45
4-32. AM 3 dB Bandwidth Test	4-47
4-33. AM Distortion Test	4-49
4-34. AM Sensitivity and Accuracy Test	4-50
4-35. Peak Incidental Phase Modulation	
Test	4-54
4-36. Pulse Modulation Test	4-56
4-37. Pulse On/Off Ratio Test	4-60 4-61
4-39. FM Distortion Test	4-61 4-62
4-40. FM Sensitivity and Accuracy Test	4-62 4-64
4-41. Incidental AM Test	4-68
4-42. Counter External Sensitivity Test	4-70
4-43. Internal Reference Accuracy Test	4-71
4-44. Internal Reference Drift Rate	
(Stability) Test	4.72
4-45. Phase Lock Restabilization Time Test .	4-75
V ADJUSTMENTS	5-1
5-1. Introduction \ldots \ldots \ldots	5-1
5-3. Safety Considerations	5-1
	5-1 5-1
5-11. Posidriv Screwdrivers	5-1 5-1
5-15. Service Aids	5-1 5-1
5-19. Factory Selected Components	5-2
5-22. Post-Repair Test and Adjustments	5-3
5-25. Power Supply Adjustments	5-8
5-26. Fixed-Frequency Modulation	
Oscillator Adjustment	5-8
5-27. Variable-Frequency Modulation	
Oscillator Adjustment (Option 001).	5-9
5-28. Meter Adjustments	5 - 12
5-29. RF Detector Offset Adjustment	5-12
5-30. Output Level Knob	F 10
Adjustment	5-13

iii

•

)

Ì

CONTENTS

Secti	ion	Page
	5-31. Output Level Vernier and	• •
	Meter Adjustment	5-14
	5-32. AM Sensitivity Adjustment	5-17
	5-33. Peak Deviation and	
	Range Switch Adjustment	5-19
	5-34. Range Switch Adjustment	5-20
	5-35. V_{T} Pot (A3R1) Adjustment	5-21
	5-36. V_{T} Voltage Adjustment	5-22
	5-37. RF Filter Adjustment	5-23
	5-38. Preliminary FM Adjustments	5-27
	5-39. FM Linearity Adjustment	5-29
	5-40. FM Sensitivity Adjustment	5-32
	5-41. Internal Reference Frequency	
	Adjustment	5-34
VI		
VI		6-1
	6-1. Introduction	
	6-3. Exchange Assemblies	
	6-5. Abbreviations	
	6-7. Replaceable Parts List	
	6-11. Ordering Information	
	6-14. Spare Parts Kit	
	6-16. Illustrated Parts Breakdowns	6-2
VII	MANUAL CHANGES	7-1
	7-1. Introduction	
	7-3. Manual Changes	
	7-6. Manual Change Instructions	
	7-7. Instrument Improvement	• •
	Modifications	7-19
	7-9. Improved FM Metering Accuracy	
	(Serial Prefix 1229A)	7-19
	7-11. Elimination of Frequency Shift in	
	Expand X100 Mode	
	(Serial Prefix 1229A)	7-19
	7-14. A8A2 Counter/Lock Board Assembly	
	Improvements	
	(Serial Prefix 1229A)	7-19
	7-16. Improved Audio Output Level	
	Accuracy (Serial Prefix 1229A)	7-21
	7-18. A26A1 Power Amplifier and AGC	
	Detector Assembly Improvement	
	(Serial Prefix 1229A)	7-21
	7-20. Reduction of RFI Leakage from Front	
	Panel (Serial Prefix 1244A	
	and Below)	7-21
	7-23. A26A4 AGC Amplifier Assembly	
	Improvement (Serial Prefix 1245A	
	-	7-22
	7-26. Reduction of RFI Leakage from RF	
	Oscillator (Serial Prefix 1246A	
	and Below)	7-22

Secti	ion		Page
•	7-28	. Replacement A7 FM Shaping Assembly	
			7-22
	7-31		
		Range Switch Assembly (Serial	
		Prefix 1246A and Below)	7-22
	7-34		
		Improvement (Serial Prefix 1246A	
		and Below)	7-24
	7-36	. A8A1 RF Scaler Assembly Improve-	
		ment (Serial Prefix 1249A)	7-24
	7-38	. A5 FM Amplifier Assembly Improve-	
		ment (Serial Prefix 1251A	
		and Below)	7-24
	7-40	. A8A2 Counter/Lock Board Assembly	
		Improvement (Serial Prefix 1251A	
		and Below)	7-24
	7-42	. Front Panel Meter M1 Replacement	
		(Serial Prefix 1251A and Below).	7-24
	7-44	. A26 AM/AGC and RF Amplifier	
		Assembly Improvement	
		(Serial Prefix 1303A and Below) . $$.	7-25
	7-46		
		Improvement (Serial Prefix 1310A	
		and Below)	7-25
	7-48.		
		ment (Serial Prefix 1313A	
		and Below)	7-26
	7-50.		
		(Serial Prefix 1313A and Below).	7-27
	7-52.		
		ment (Serial Numbers 1316A00464	- 0-
	7-54.	and Below).	7-27
	1-54.		
		(Serial Prefixes 1244A through 1316A)	7 07
	7-56.	•	1-21
	1-00.	Improvement (Serial Prefixes 1323A	
			7-27
			(-4)
VIII	SERV	VICE	8-1
	8-1.	Introduction	8-1
	8-5.	Principles of Operation	8-1
	8-8.	Troubleshooting	8-1
		Recommended Test Equipment	8-1
		Service Aids	8-1
	8-23.	Repair	8-3
	8-24.	Factory Selected Components	8-3
	8-26.	Etched Circuits	8-3
	8-28.		8-3
	8-30.		8-3
	8-37.		8-5
	8-39.	Basic Circuit Theory	8-5

(I

CONTENTS

Section		Page	Section				Page
8-52. Binary Registers .	Symbols	8-8	8-57. 8-61. 8-69.	Binary Shift Register Decade Counters and Symbols Linear Integrated Circuits	•	•	. 8-9

TABLES

Table	e	Page
1-1.	Specifications	. 1-8
1-2.	Recommended Test Equipment	. 1-13
1-3.	Recommended Test Accessories	. 1-20
4-1.	Performance Test Record	. 4-77
4-2.	Recommended Test Abridgements	
5-1.	Factory Selected Components	. 5-2
5-2.	Post-Repair Test and Adjustments	. 5-4
5-3.	RF Filter Check	. 5-26
6-1.	Part Numbers for Exchange Assemblies	. 6-2
6-2.	Reference Designations and Abbreviations .	. 6-3
6-3.	Replaceable Parts	. 6-5
6-4.	Code List of Manufacturers	. 6-42
7-1.	Manual Changes by Serial Number	. 7-1

Table					Page
70					-
7-2.	- information of one angles by component		-	•	• • –
8-1.	Etched Circuit Soldering Equipment	•			. 8-4
8-2.	Logic Levels				. 8-6
8-3.	Assembly Information Index				. 8-14
8-4.	Schematic Diagram Notes				. 8-15
8-5.	Meter Drive Amplifier Data				. 8-52
8-6.	Total Count of Time Base Reference				•
	Counters U13, U14, and U15.				. 8-56
8-7.	Count Modes of Counters				
	A8A3U13 and U14				. 8-56
8-8.	Count Modes of Counter A8A3U15				. 8-56
8-9.	Data Inputs of Decimal Point				
	Shift Register	•		•	. 8-56

ILLUSTRATIONS

Figu	re					Page
1-1.	with do top bight denerator (OF					
1 0	and Accessories Supplied	•	•	•	•	1-0
1-2.	since on the order of the order					
	Offset from Carrier					
1-3.	Specified Signal-to-Phase Noise Ratio					
1-4.		•	•	•	•	1-4
1-5.		•				
1-6.						1-5
1-7.	520 MHz Notch Filter	•				1-21
1-8.	FM Linearity Circuit					1-21
1-9.	Noise Phase Lock Circuit			•		1-22
2-1.	Line Selector					2-1
2-2.	Power Cables Available					2-2
2-3.	Preparation for Rack Mounting					2-4
	-					
3-1.	Lamp Replacement					3-1
3-2.						
	Connectors					3-2
3-3.						
3-4.						
3-5.	Setting the Frequency and				-	
	Amplitude Controls	_			_	3-12
3-6,	Setting the Modulation Controls	•	•	•	•	3.15
	-	-	•	•	•	
4-1.	Frequency Stability vs Time and Restal	bil	iza	tio	n	
	Time Test Setup	~				4.5
4-2.	Frequency Stability vs Temperature	•	•	•	•	1.0
	Test Setup	_		_		4-7

Page Figure

Figure	Page
4-3. Frequency Stability vs Line Voltage	
Test Setup	. 4-8
4-4. Frequency Stability vs Load, Level, and Mode	
Test Setup	
4-5. Sub-Harmonics and Non-Harmonic Spurious	
Test Setup	. 4-14
4-6. Single Sideband Phase Noise Test Setup	. 4-15
4-7. Single Sideband Broadband Noise Floor	
Test Setup	. 4-18
4-8. Residual AM Test Setup	. 4-20
4-9. Residual FM Test Setup	. 4-22
4-10. Output Level Accuracy	
Test Setup (Abbreviated)	. 4-25
4-11. Output Level Accuracy	
Test Setup (Complete)	. 4-31
4-12. Output Level Flatness Test Setup	. 4-36
4-13. Output Impedance Test Setup (In Band)	. 4-38
4-14. Output Impedance Test Setup	
(Out of Band)	. 4-40
4-15. Output Leakage Test Setup	. 4-42
4-16. Internal Modulation Oscillator Test Setup .	. 4-44
4-17. Internal Modulation Oscillator Distortion	
Test Setup	. 4-46
4-18. AM 3 dB Bandwidth Test Setup	. 4-47
4-19. AM Distortion Test Setup	. 4-49
4-20. AM Sensitivity and Accuracy Test Setup	. 4-51
4-21. Peak Incidental Phase Modulation	
Test Setup	. 4-54
4-22. Pulse Modulation Test Setup	. 4-57

ILLUSTRATIONS (Cont'd)

Figur	e	Page
4-23.	Pulse Measurements	4-58
4-24.	FM 3 dB Bandwidth Test Setup	4-61
4-25.	FM Distortion Test Setup	4-63
	FM Sensitivity and Accuracy Test Setup	
	Incidental AM Test Setup	
	Counter External Sensitivity Test Setup	
		4-71
	Internal Reference Drift Rate	
	(Stability) Test Setup	4-73
5.1	Output Level Vernier and Meter Adjustment	
0-1.		5-15
5-2.	AM Sensitivity Adjustment Test Setup	
5-3.	V_{T} Pot Adjustment	
5-4.	Filter Terminology	
5-5.	RF Filter Adjustment Test Setup	
5-6.	256-512 MHz High Band Capacitor Adjustment	0-24
0-0.		5.97
5-7.	Orientation	5 20
5-8.	• • •	
5-9.		5-33
5-10.	Internal Reference Frequency Adjustment	
	Test Setup	5-35
6-1.	Cabinet Parts	6-40
6-2.		
		•
7-1.	A8A2 Counter/Lock Board Assembly	
	Backdating (Change B)	7-6
7-2.	A3A4 Connector Board Assembly Backdating	
	(Change C)	7-7
7-3.		
	Assembly Backdating (Change D)	
7-4.	A26A2U1 Backdating (Change E)	7-11
7-5.		
	(Change E)	7-12
7-6.		
	(Change F)	7-13
7-7.	A8A1 RF Scaler Assembly Backdating	
	(Change J)	7-16
7-8.		
		7-20
7-9.	A7 FM Shaping Assembly Modification	7-23
7-10.	A9 Peak Deviation and Range Switch	
		7-23
7-11.	A10A2 RF Divider Assembly Modification $\ .$	
_		
8-1.	Signal Generator with Circuit Boards	
	on Extenders	. 8-2
8-2.	x	
	Marking Methods	. 8-4
8-3.	Binary Symbols	. 8-6

Figur	re Pag	e
8-4.	Triggered Flip-Flop 8-	7
8-5.		
8-6.		
	J/K Flip-Flop 8-	
	Multiple Input J/K Flip-Flop 8-	
	Binary Latch 8-	
8-10.	Binary Shift Register 8-	9
	Basic Decade Counter (Scaler) 8-	
	Programmable Counter	
	Programmable Up/Down Counter 8-1	
	Operational Amplifier 8-1	
	Comparator	
	Overall Block Diagram	
	FM Circuits and RF Oscillator	
	Block Diagram	1
8-18.	AM/AGC Circuits and Output Amplifier	
	Block Diagram 8-2	3
8-19.	Counter/Lock Circuits Block Diagram 8-2	
	P/O A3A4 Connector Board Assembly	
	Component Locations	7
8-21	RF Oscillator Simplified Diagram 8-2	
	P/O A3A4 Connector Board Assembly	•
0-22.	Component Locations	8
8.23	P/O A9 Peak Deviation and Range Switch	0
0-20,	Assembly Component Locations 8-2	8
891	A5 FM Amplifier Assembly	0
0-24.	Component Locations	a
0.95	FM Amplifiers Schematic Diagram	
	P/O A7 FM Shaping Assembly	ฮ
0-20.	Component Locations	1
0.07	-	T
0-27.	FM Shaping Circuits and Phase Lock Loop Filter Schematic Diagram 8-3	-
0 10		T
0-20.	P/O A6 Annunciator Assembly Component	ก
0 90	Locations	2
	Assembly Component Locations 8-3	n
	P/O A7 FM Shaping Assembly Component	4
0-00.		2
0 21	Locations	0
0-91.	Circuits Schematic Diagram 8-3	2
8.32	A11 Fixed-Frequency Modulation Oscillator	J
0-02.		5
8.33	Assembly Component Locations 8-3 Fixed-Frequency Modulation Oscillator	0
0.00.	Schematic Diagram	5
0 91	-	J
0-04.	A11 Variable-Frequency Modulation Oscillator	
	Assembly (Option 001) Component	7
0.95	Locations	(
0-30.	Variable-Frequency Modulation Oscillator	7
0.00	(Option 001) Schematic Diagram 8-3	1
8-36.	A10A1 RF Filter Assembly Component	
0.0-	Locations	
8-37.	RF Filters Schematic Diagram 8-3	9

x 1

()

ſ

ILLUSTRATIONS (Cont'd)

Figure	Page ·
8-38. A10A2 RF Divider Assembly	• .
Component Locations	8-41
8-39. RF Dividers Schematic Diagram	8-41
8-40. A26A3 Modulator Assembly	
Component Locations	. 8-43
8-41. A26A4 AGC Amplifier Assembly	
Component Locations	. 8-43
8-42. AGC Amplifiers and Amplitude Modulator	
Schematic Diagram	. 8-43
8-43. A26A1 Power Amplifier and AGC Detector	
Assembly Component Locations	. 8-45
8-44. P/O A26A2 AM Offset and Pulse Switching	
Assembly Component Locations	. 8-45
8-45. RF Amplifier, Pulse Switching, and Step	
Attenuator Schematic Diagram	. 8-45
8-46. P/O A26A2 AM Offset and Pulse Switching	
Assembly Component Locations	. 8-47
8-47. AM Preamplifier Schematic Diagram	. 8-47
8-48. AM Interconnections and RF ON/OFF Switch	
	. 8-49
8-49. A1A1 RF Vernier Assembly	
Component Locations	. 8-51
8-50. RF Vernier Schematic Diagram	. 8-51
8-51. A2 Meter Switch/Detector Assembly	
	. 8-52
8-52. A4 Meter/Annunciator Drive Assembly	
Component Locations	. 8-53
8-53. P/O A6 Annunciator Assembly	
	. 8-53
8-54. Meter Circuits Schematic Diagram	. 8-53
8-55. A8A1 RF Scaler Assembly	
	. 8-55
8-56. P/O A8A3 Time Base Assembly	
	. 8-55
· · · · · · · · · · · · · · · · · · ·	. 8-55
8-58. P/O A8A3 Time Base Assembly	
	. 8-57
8-59. Counter Time Base Schematic Diagram	. 8-57
8-60. A8A4 Counter Display Assembly	
Component Locations (P/O A8)	. 8-59
8-61. P/O A8A2 Counter/Lock Board Assembly	
Component Locations	. 8-59
8-62. Up/Down Counter and Display	_
Schematic Diagram	. 8-59

Figure	Page
8-63. P/O A8A2 Counter/Lock Board Assembly	
Component Locations	8-61
8-64. Counter Phase Lock Circuits	
Schematic Diagram	8-61
8-65. Current Foldback	8-62
8-66. A12 Rectifier Assembly	
Component Locations	8-62
8-67. A20 +5.2V and +44.6V Regulator Assembly	
Component Locations	8-63
8-68. A22 +20V and -20V Regulator Assembly	
Component Locations	8-63
8-69. Power Supply Circuits Schematic Diagram	8-63
8-70. A18-5.2V Regulator and Fan Driver Assembly	
Component Locations	8-65
8-715.2V Regulator and Fan Circuits	
Schematic Diagram	8-65
8-72. A17 Power Supply Mother Board Assembly	
Component Locations	8-67
8-73. Power Supply Mother Board	
Schematic Diagram	8-67
8-74. A13 Modulation/Metering Mother Board	
Assembly Component Locations	8-68
8-75. Modulation/Metering Mother Board	
Schematic Diagram	8-69
8-76. A1 Output Level Assembly	
Illustrated Parts Breakdown	8-71
8-77. A8 Counter/Lock Assembly	
Illustrated Parts Breakdown	8-73
8-78. A9 Peak Deviation and	
Range Switch Assembly	
	8-75
8-79. A11 Variable-Frequency	
Modulation Oscillator (Option 001)	
Illustrated Parts Breakdown	8-75
8-80. A10 Divider/Filter	
Assembly Illustrated Parts	
Breakdown	8-77
8-81. A26 AM/AGC and RF Amplifier	
Illustrated Parts Breakdown	8-79
8-82. Top Internal Views	
-	8-81
	8-83
8-84. Bottom Internal Views	
(Option 001 shown)	. 8-83

SERVICE SHEETS

Num	ber	Page
1	Overall Block Diagram	. 8-18
2	FM Circuits and RF Oscillator	
	Troubleshooting	. 8-20
3	AM/AGC Circuits and Output Amplifier	
	Troubleshooting	. 8-22
4	Counter/Lock Circuits Troubleshooting	. 8-24
5	RF Oscillator (A3)	
6	FM Amplifiers (A3, A5, A9, A13)	
7	FM Shaping Circuits and Phase Lock Loop	
	Filter (A7, A9)	. 8-30
8	Over-Deviation Detector and Meter Control	٠,
	Circuits (A6, A7, A9)	. 8-32
9	Fixed-Frequency Modulation Oscillator	
	(A11, A13)	. 8-34
9A	Variable-Frequency Modulation Oscillator for	
	Option 001 (A11, A13)	. 8-36
10	RF Filters (A10A1)	. 8-38
11	RF Dividers (A10A2)	
12	AGC Amplifiers and Amplitude Modulator	
	(A26A3, A26A4)	. 8-42
13	RF Amplifier, Pulse Switching, and Step	
	Attenuator $(A1, A26A1, A26A2)$	8-44
14	AM Preamplifier (A13, A26A2)	. 8-46
1-7	12. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	. 0 - 20

Num	ber	Page
15	AM Interconnections and RF ON/OFF	
	Switch (A9, A26)	. 8-48
16	RF Vernier (A1A1, A26)	. 8-50
17	Meter Circuits (A2, A4, A6)	. 8-52
18	Counter RF Scaler (A8A1, A8A3)	. 8-54
19	Counter Time Base (A8A3, A9)	. 8-56
20	Up/Down Counter and Display	
	(A8A2, A8A4)	. 8-58
21	Counter Phase Lock Circuits (A8A2)	. 8-60
22	Power Supply Circuits (A12, A14, A20, A22).	. 8-62
23	-5.2V Regulator and Fan Circuits	
	(A16, A18)	. 8-64
24	Power Supply Mother Board (A17)	. 8-67
25	Modulation/Metering Mother Board (A13) .	. 8-68
Α	A1 Assembly Removal and Disassembly	. 8-70
В	A8 Assembly Removal and Disassembly	. 8-72
С	A9 and A11 Assemblies Removal and	
	Disassembly	. 8-74
D	A10 Assembly Removal and Disassembly	. 8-76
Ε	A26 Assembly Removal and Disassembly . $\ .$. 8-78
F	General Removal Procedures and	
	Top Internal Views	. 8-80
G	Rear Panel and Bottom Internal Views	. 8-83

WARNINGS

SAFETY

To avoid the possibility of injury or death, the following precautions must be followed before the instrument is switched on:

a. If this instrument is to be energized via an autotransformer for voltage reduction, make sure that the common terminal is connected to the earthed pole of the power source.

b. The power cable plug shall only be inserted into a socket outlet provided with a protective earth contact. The protective action must not be negated by the use of an extension cord without a protective conductor (grounding).

c. Before switching on the instrument, the protective earth terminal of the instrument must be connected to a protective conductor of the power cord. This is accomplished by ensuring that the instrument's internal earth terminal is correctly connected to the instrument's chassis and that the power cord is wired correctly (see Service Sheet 22).

Whenever it is likely that the protection has been impaired, the instrument must be made inoperative and be secured against any unintended operation.

Any interruption of the protective (grounding) conductor inside or outside the instrument or disconnection of the protective earth terminal is likely to make the instrument dangerous. Intentional interruption is prohibited.

HIGH VOLTAGE

Any adjustment, maintenance, and repair of the opened instrument under voltage should be avoided as much as possible and, if inevitable, should be carried out only by a skilled person who is aware of the hazard involved.

Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.

FUSES

Make sure that only fuses with the required rated current and of the specified type (normal blow time delay, etc.) are used for replacement. The use of repaired fuses and the short-circuiting of fuseholders must be avoided.

CAUTIONS

GROUNDING

Any interruption of the protective (grounding) conductor inside or outside the instrument is likely to cause damage to the instrument. To avoid damage, this instrument and all line powered devices connected to it must be connected to the same earth ground (see Section II).

LINE VOLTAGE

Be sure to select the correct fuse rating for the selected line voltage (see LINE VOLTAGE SELECTION in Section II); fuse ratings are listed on the fuse compartment.

To prevent damage to the instrument, make the line voltage selection *before* connecting line-power. Also ensure that the line power cord is connected to a line power socket that is provided with a protective earth contact.

SAFETY

To avoid the possibility of damage to test equipment, read completely through each test before starting it. Make any preliminary control settings necessary for correct test equipment operation.

COUNTER INPUT

Do not apply a dc voltage or >+15 dBm to COUNTER INPUT.

SEMI-RIGID COAX

While working with and around the semi-rigid coaxial cables in the generator, do *not* bend the cables more than necessary. Do *not* torque the RF connectors to more than 2 inch-pounds.

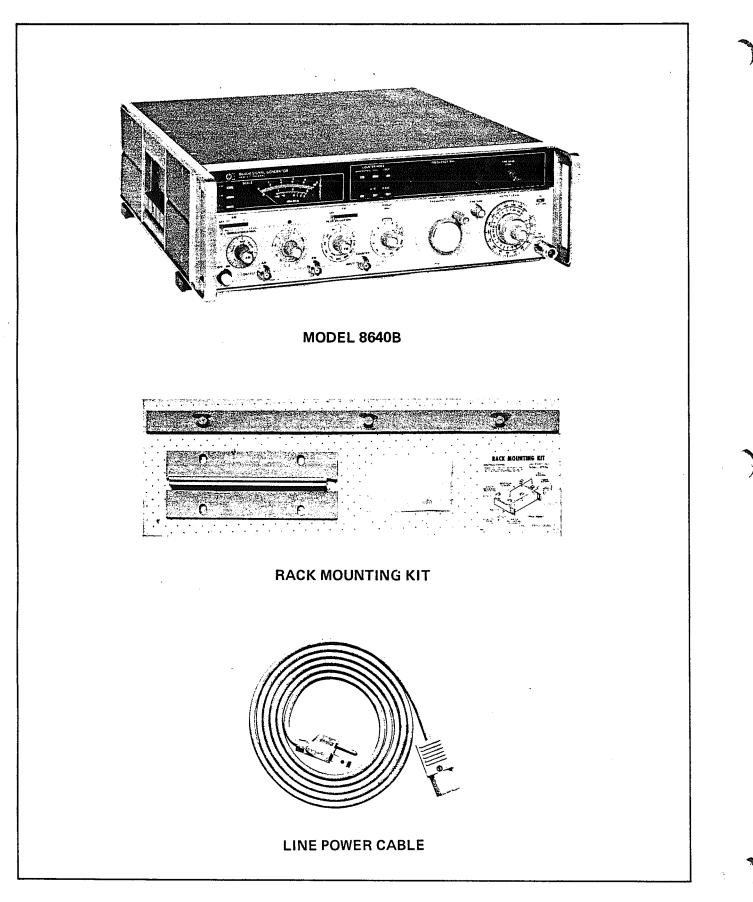


Figure 1-1. HP Model 8640B Signal Generator (Option 001) and Accessories Supplied

SECTION I GENERAL INFORMATION

1-1. INTRODUCTION

1-2. This manual contains the operating and service information for the Hewlett-Packard Model 8640B Signal Generator. The Signal Generator (with variable modulation oscillator Option 001) is shown in Figure 1-1 with all of its externally supplied accessories.

1-3. This section of the manual describes the instruments documented by this manual and covers instrument description, options, accessories, specifications and other basic information. The other sections provide the following information:

Section II, Installation: provides information about initial inspection, preparation for use, and storage and shipment.

Section III, Operation: provides information about panel features, and provides operating checks, instructions, and maintenance information.

Section IV, Performance Tests: provides the information required to verify that the instrument is performing as specified in Table 1-1.

Section V, Adjustments: provides the information required to properly adjust and align the instrument.

Section VI, Replaceable Parts: provides ordering information for all replaceable parts and assemblies.

Section VII, Manual Changes: this section is reserved to provide manual change information in future revisions of this manual.

Section VII, Service: provides the information required to repair the instrument.

1-4. Packaged with this manual is an Operating Information Supplement. This is simply a copy of the first three sections of this manual. This supplement should stay with the instrument for use by the operator. Additional copies can be ordered through your nearest Hewlett-Packard Sales and Service Office; the part number is listed on the title page of this manual and on the rear cover of the supplement.

1-5. Also listed on the title page of this manual is a "Microfiche" part number. This number can be used to order $4 \ge 6$ inch microfilm transparencies of the manual. Each microfiche contains up to 60 photo duplicates of the manual's pages. The microfiche package also includes the latest Manual Changes supplement as well as all pertinent Service Notes.

1-6. Instrument specifications are listed in Table 1-1. These specifications are the performance standards or limits against which the instrument can be tested. Paragraph 1-17 lists some supplemental performance characteristics. Supplemental characteristics are not specifications but are typical characteristics included as additional information for the user.

1-7. INSTRUMENTS COVERED BY MANUAL

1-8. This instrument has a two-part serial number. The first four digits and the letter comprise the serial number prefix. The last five digits form the sequential suffix that is unique to each instrument. The contents of this manual apply directly to instruments having the same serial number prefix(es) as listed under SERIAL NUMBERS on the title page.

1-9. An instrument manufactured after the printing of this manual may have a serial prefix that is not listed on the title page. This unlisted serial prefix indicates that the instrument is different from those documented in this manual. The manual for this instrument is supplied with a yellow Manual Changes supplement that contains "change information" that documents the differences.

1-10. In addition to change information, the supplement may contain information for correcting errors in the manual. To keep this manual as current and accurate as possible, Hewlett-Packard recommends that you periodically request the latest Manual Changes supplement. The supplement for this manual is keyed to this manual's print date and part number, both of which appear on the title page. Complimentary copies of the supplement are available from Hewlett-Packard.

1-11. For information concerning a serial number prefix not listed on the title page or in the Manual Changes supplement, contact your nearest Hewlett-Packard office.

1-12. GENERAL DESCRIPTION

1-13. The Model 8640B Signal Generator covers the frequency range 500 kHz to 512 MHz (450 kHz to 550 MHz with band over-range) and can be extended to 1100 MHz with an external doubler. An optional variable audio oscillator is also available to extend the CW output range of the generator down to 20 Hz. This broad coverage, together with calibrated output and modulation, provides for complete RF and IF performance tests on virtually any type of HF, VHF, or UHF receiver.

1-14. This solid state generator has an output level range of +19 to -145 dBm (2 V to 0.013μ V) and is calibrated and metered. The output is leveled to within ±0.5 dB across the full frequency range of the instrument.

1-15. The generator also provides AM, FM, and pulse modulation for a wide range of receiver test applications. AM and FM can be performed independently or simultaneously in either the internal or external modes. This modulation is calibrated and metered for direct readout under all operating conditions. External pulse modulation is also available.

1-16. Other significant features are extremely low noise, built-in phase lock and counter, and front panel controls designed for operating convenience and flexibility.

1-17. PERFORMANCE CHARACTERISTICS

1-18. Spectral Purity

1-19. The basic frequency source of the Signal Generator is a mechanically tuned high-Q cavity oscillator that operates over the frequency range 230 - 550 MHz. This oscillator has an inherent stability of better than 10 ppm/10 min and exceptionally low noise characteristics. The lower 9 frequency ranges are obtained by dividing the basic oscillator frequency and filtering the unwanted

1-2

harmonics. Using this technique, sub-harmonic and non harmonic-spurious are virtually eliminated. A band over-range of 7% to 10% is also provided for convenience when operating near the nominal band edges.

1-20. Frequency tuning within the selected band is accomplished with approximately 8 turns of the FREQUENCY TUNE control (see Figure 3-2) for fast selection of the desired output frequency. A mechanical FINE TUNE control has a tuning range of 200 ppm for precision frequency setting.

1-21. Restabilization time is short when tuning the frequency across any one band. The total frequency excursion after any frequency change is typically < 20 ppm and within 15 minutes the output has restabilized to the specified 10 ppm/10 min. When not phase locked, no restabilization time is required when switching frequency bands for a fixed position on the frequency tune control.

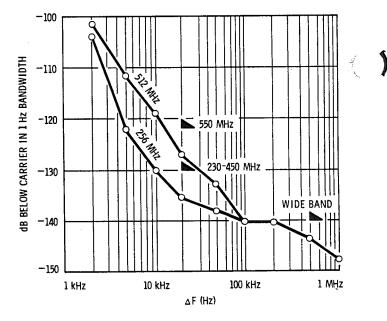


Figure 1-2. Measured Single Sideband Noise vs Offset from Carrier. (Stated in a 1 Hz Bandwidth at 256 and 512 MHz Carrier Frequencies on 256 - 512 MHz Band.) Markers indicate specified limits.

1-22. Noise performance of the generator is state of the art for a solid state generator. The high-Q cavity oscillator has been optimized with use of a low noise microwave transistor for a spectrally pure output signal. Figure 1-2 shows the typical measured single-sideband noise performance in a

\$

1 Hz bandwidth for various offsets from a (256 and 512 MHz) carrier. The low close-in noise characteristic is ideally suited for the stringent adjacent channel tests that are commonly made on a wide variety of communication receivers.

1-23. Figure 1-3 gives a plot of the guaranteed SSB noise performance for a 20 kHz offset from the carrier for the 256 - 512 MHz band. From 230 to 450 MHz, noise is >130 dB/Hz below the carrier level and rises to 122 dB/Hz at 500 MHz. This signal-to-noise ratio decreases by approximately 6 dB for each division of the output frequency down to the broadband noise floor of better than 140 dB/Hz. This exceptional noise performance is also preserved during FM* and in the phase lock mode.

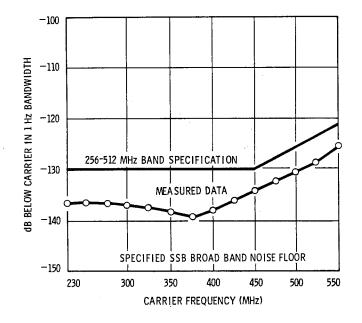


Figure 1-3. Specified Signal-to-Phase Noise Ratio at 20 kHz Offset vs Carrier Frequency (MHz). (Stated in a 1 Hz Bandwidth.) For lower frequencies phase-noise decreases approximately 6 dB per frequency division down to the broadband noise floor.

1-24. Frequency Counter

1-25. The Signal Generator has a built-in 550 MHz frequency counter and phase lock synchronizer. The 6-digit LED display gives a normal resolution of 10 kHz at 500 MHz and 10 Hz at 500 kHz. The resolution can be increased using the X10 or X100 EXPAND buttons near the display. In the X100

EXPAND mode, the resolution is 100 Hz at 500 MHz and 0.1 Hz at 500 kHz.

1-26. This resolution, combined with the high stability of the generator, provides precision frequency selection and meaningful measurements on high performance receiver systems. When selecting the external doubler band, the counter displays the doubled output frequency directly.

1-27. When using the expand modes, it is possible for significant digits or the decimal point to be shifted off the display. When this occurs, an OVERFLOW light reminds the operator that the display is not showing the complete output frequency.

1-28. The built-in counter can also be used to count external input signals from 1 Hz to 550 MHz and eliminates the need for a separate frequency counter in many measurement systems. Input sensitivity is <100 mV into 50Ω . Using the EX-PAND buttons, it is possible to achieve a resolution of 1 Hz in the 0-10 MHz EXTERNAL count mode or 100 Hz in the 0-550 MHz mode.

1-29. Phase-Lock Mode

1-30. Also included in the Signal Generator is a built-in phase lock synchronizer that locks the RF output frequency to the crystal time base used in the counter. In this locked mode, output stability is better than 5×10^{-8} /h and the spectral purity and FM capability (down to 50 Hz rates) of the unlocked mode are preserved. For higher stability, it is possible to lock to an externally applied 5 MHz standard. Two Model 8640B's can also locked together for various two-tone be measurements.

1-31. Phase locking the generator is simple - just push the front panel LOCK button. The generator is then locked to the frequency shown on the LED display. If lock is broken (for exampled by tuning to a new output frequency or during warmup), there is an immediate indication: the LED display flashes. The generator can be relocked by releasing the LOCK button and then relocking.

1-32. Lock can be achieve in the normal mode of the counter or in the X10 EXPAND mode if the OVERFLOW light is not on. It is not possible to lock in the X100 EXPAND mode or when counting external inputs. Maximum resolution in the locked mode is 1 kHz at 500 MHz, increasing to 1 Hz at 500 kHz.

^{*} It is slightly degraded in FM

1-33. If an output frequency between adjacent counter indications is required, a TIME BASE VERNIER is provided with a range of ± 20 ppm. This fine tunes the internal crystal time base and sets the output frequency between adjacent counts (i.e., the digits to the right of the display). This gives continuous coverage of all output frequencies even in the phase lock mode. An UNCAL light near the vernier will indicate when this mode has been selected since the counter display is incorrect.

1-34. When phase locked, FM capability is preserved down to modulation rates of <50 Hz. The narrow bandwidth of the phase lock loop (<5 Hz) allows FM up to 250 kHz rates and assures no degradation in noise from the unlocked mode. The generator's residual FM is not changed by phase lock.

1-35. Amplitude Modulation

1-36. AM is variable from 0 to 100% with the bandwidth, accuracy, and low incidental FM required for the most stringent AM applications. The front panel meter gives a direct readout of AM% in either the internal or external mode and autoranges the 0 - 100% scale at 0 - 30% for improved settability at low modulation depth.

1-37. AM up to bandwidths of 60 kHz is possible depending on carrier frequency and modulation depths. Distortion is specified at 400 Hz and 1000 Hz to be <1% up to 50% AM, <3% to 90% AM. Figure 1-4 shows measured AM distortion characteristics for other modulation frequencies. Note that for 0-50% AM, distortion is <1% to approximately 50 kHz for an output frequency of 200 MHz.

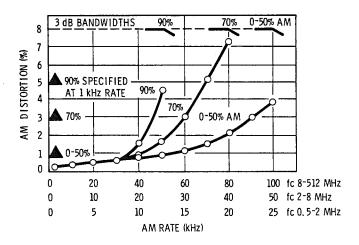


Figure 1-4. AM distortion vs AM rate measured at 200 MHz and +13 dBm, but applies to all bands. (Supplemental information only.)

1-38. Pulse Modulation

1-39. Also included on the AM function switch is a position for external PULSE modulation. In this mode, pulse inputs with repetition rates to 500 kHz and widths down to 2 μ s can be applied to modulate the RF carrier. Rise and fall times vary with output frequency down to <1 μ s from 8 to 512 MHz.

1-40. Pulse inputs turn the RF on. Hence with no pulse input the RF will read approximately zero on the built-in level meter. For pulse inputs within the specified range, the RF output calibration is preserved and the level meter reads the pulse-on power of the RF output. For repetition rates below that specified, the pulsed RF output is still available but the pulse-on level is no longer calibrated or metered.

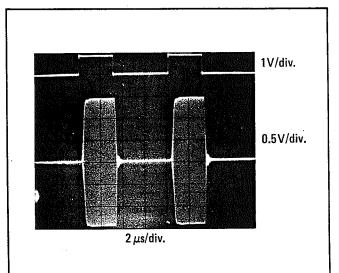


Figure 1-5. Pulsed RF 20 MHz Carrier Frequency at 400 kHz Pulse Rate and 1 μ s Pulse Width.

1-41. Frequency Modulation

1-42. FM is calibrated, metered and constant with frequency and band changes. Peak deviations to at least 0.5% of carrier frequency are available (i.e., 1% of the minimum frequency in each octave band). On the 256 - 512 MHz band, for example, the maximum deviation is 2.56 MHz peak or 5.12 MHz peak-to-peak. With this wide deviation capability, it is possible to sweep the generator, using the dc coupled FM mode and a sawtooth input, to test and align IF filters and discriminators. <10 ppm/10 min.

General Information

1-43. For narrowband FM applications, a minimum full scale deviation of 5 kHz is provided on the meter and the PEAK DEVIATION range switch. When switching from the CW to FM mode, there is negligible shift in carrier frequency and no degradation in spectral purity for these narrow deviations. With the generator in the phase lock mode it is possible to modulate at rates from 50 Hz to 250 kHz with accurate narrowband FM and the carrier drift stability of a crystal oscillator. Using the unlocked mode, it is possible to modulate from dc to 250 kHz with a carrier drift stability of

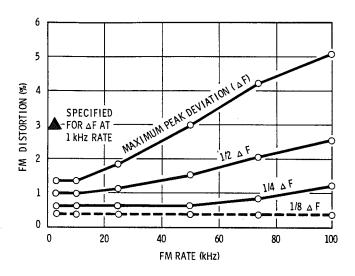


Figure 1-6. FM distortion vs FM rate measured in the 8-16 MHz band, but applies to all bands (supplemental information only).

1-44. Standard and Optional Audio Oscillators

1-45. Standard tones for internal modulation are 400 Hz and 1000 Hz. These tones are also available at the front panel and can be varied in output level from 1 V to 10 mV into 600Ω . Total harmonic distortion is typically < 0.25%.

1-46. Optionally available on the Signal Generator is a built-in variable frequency oscillator covering the range 20 Hz to 600 kHz (fixed tones of 400 Hz and 1000 Hz are also provided). This internal oscillator provides a wide range of standard modulation frequencies and can be used for receiver audio bandwidth testing as well. Output from this modulation source is available separately at the front panel and can be varied in level from 3 V to 20 mV into 600Ω . This audio oscillator, Option 001, extends the usable CW range of the generator down to 20 Hz.

1-47. Multi-Function Meter and Annunciators

1-48. The front panel on the Signal Generator monitors the RF output level in dBm and volts, the AM modulation percentage, and the FM peak deviation in kHz or MHz. The accuracy of this meter is usually better than $\pm 3\%$ of reading. Pushbuttons select the meter function, and scale lights indicate the range on which the meter reading should be made. For RF output level and AM%, the scales autorange for better resolution. For FM, the appropriate scale is selected by the PEAK DEVIATION range switch.

1-49. Also provided are three front panel annunciators that indicate when certain settings of RF level and modulation controls exceed specified limits. Besides giving a warning indication, the annunciators instruct the operator how to return the instrument to proper operation.

1-50. For example, the REDUCE PEAK POWER annunciator lights whenever the combined settings of RF output level and AM modulation exceed the maximum specified output level of +19 dBm. Hence for 100% AM, the REDUCE PEAK POWER light will stay on until the RF level is reduced to +13 dBm.

1-51. The REDUCE PEAK DEVIATION annunciator lights whenever the PEAK DEVIATION RANGE switch has been set to exceed the allowable limits for any output FREQUENCY RANGE. The specification allows for a maximum peak deviation of 1% of the minimum frequency in each band (e.g., 2.56 MHz on the 256 - 512 MHz band). When the annunciator lights, the FM is automatically turned off the and FM meter reads zero.

1-52. The REDUCE FM VERNIER annunciator lights whenever the FM input and FM vernier setting combine to exceed the 1 volt drive level required to achieve the maximum deviation indicated on the PEAK DEVIATION range switch. When this occurs, either the FM vernier or the amplitude of the incoming modulation signal should be reduced to obtain specified FM performance.

1-53. Output Level

1-54. The wide output range of the generator is achieved with a 10 dB step attenuator and an 18 dB concentric vernier. Output levels can be read directly on the attenuator dial or (for greater accuracy) on the autoranging meter. The meter scales are automatically selected to give the maximum indicator resolution for any output level.

1-55. The maximum output level of +19 dBm permits high level tests on receiver IF's, amplifiers, and mixers without additional power amplification. At the same time, extremely low leakage ensures receiver sensitivity measurements down to levels of 0.03 μ V in a shielded system.

1-56. For improved accuracy at low output levels, the meter, in conjunction with the attenuator, is factory-calibrated against a precision standard to remove much of the error that is accumulated from the attenuator steps. Using a power meter and calibrating the output for one output frequency and vernier setting, it is then possible to make sensitivity measurements to better than ± 1 dB accuracy down to output levels of -127 dBm.

1-57. OPTIONS

1-58. Option 001. Option 001 (covered in this manual) provides a modulation oscillator that is continuously settable from 20 Hz to 600 kHz. The oscillator can also be set for 400 Hz or 1 kHz fixed tones.

1-59. Option 002. Option 002 (not covered in this manual) provides an internal, active frequency doubler that extends the frequency range of the generator to 1024 MHz (to 1100 MHz with overrange).

1-60. Option 003. Option 003 (not covered in this manual) provides reverse power protection to the generator's output attenuator and amplifier. It is particularly useful when using the generator to test transceivers.

1-61. Option 004. Option 004 (not covered in this manual) provides a demodulated output and modified AM circuitry that can be used to set very accurate AM depths. It also provides a 1 dB output step attenuator in addition to the standard 10 dB output step attenuator. These features allow the generator to be used to test VOR, ILS, and VHF communications receivers.

1-62. ACCESSORIES SUPPLIED

1-63. The Model 8640B is supplied with the following accessories (they are shown in Figure 1-1):

Rack Mounting Kit (HP 5060-8740) Line Power Cable (HP 8120-1378) 2 Amp Fuse (HP 2110-0002) 1 Amp Fuse (HP 2110-0001) 1-64. The rack mounting kit, the cable, and the fuses are fully described in Section II.

1-65. The following accessories are mounted inside the instrument's chassis and are available for adjustment and repair (for more information, see Sections V and VIII):

Combination Wrench (HP 08640-00027) Spare fuses for power supply circuit boards Spare power supply regulator integrated circuit

30-Pin Extender Board (HP 08640-60036)

1-66. EQUIPMENT AVAILABLE

1-67. Fuseholder. The HP Model 11509A Fuseholder attaches to the RF OUTPUT jack and prevents accidental damage to the generator's output attenuator by externally applied RF. It is primarily used when testing transceivers.

CAUTION

The fuseholder may not protect the output amplifier against a fast pulse of reverse power on the top two output level ranges.

1-68. Termination. The HP Model 11507A Termination maintains the generator's output level calibration when the output is connected to load impedances other than 50 ohms. It can provide source impedances of 25 and 5 ohms, and it can simulate a broadcast-band dummy antenna. The frequency range is 50 kHz to 65 MHz.

1-69. 75 Ohm Adapter. The HP Model 11687A 50 to 75 Ohm Adapter connects to the generator's output to provide a source impedance of 75 ohms.

1-70. Doubler. The HP Model 11690A Doubler extends the usable frequency range of the generator one octave to 1024 MHz (actually to 1100 MHz with 7% frequency over-range). Conversion loss in the doubler is typically <13 dB.

1-71. Mixer. The HP Model 10514A Double Balanced Mixer can be used at the generator's output as a nanosecond pulse modulator or as a balanced mixer.

1-72. Protective Cover. The HP 5060-8767 Control Panel Cover protects the panel from dust and impact damage.

1-73. WARRANTY

1-74. The Model 8640B is warranted and certified as indicated on the inner front cover of this manual. For further information, contact the nearest Hewlett-Packard Sales and Service Office; addresses are provided at the back of this manual.

1-75. TEST EQUIPMENT REQUIRED

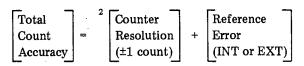
1-76. Tables 1-2 and 1-3 list the test equipment and accessories required to check, adjust and repair the Model 8640B. If substitute equipment is used it must meet the listed critical specifications.

NOTE

The safety classification of this instrument is Safety Class I. It has been designed and tested according to IEC Publication 348 Safety Requirements for Electronic Measuring Apparatus and has been supplied in safe condition. The instruction manual contains information, warnings, and cautions which must be followed by the user to ensure safe operation and to retain the instrument in safe condition. (All specifications apply over the nominal Frequency Bands and over the top 10 dB of the output level vernier range unless otherwise specified.)

FREQUENCY CHARACTERISTICS

Range: 500 kHz to 512 MHz in 10 Octave Bands (to 1024 MHz with External Frequency Doubler).


Bands and Band Overlap: Bands extend 10% below and 7% above the nominal Frequency Bands shown below.

Frequency Bands (MHz)	Frequency Range (MHz) (with overlap)
0.5 - 1	0.45 - 1.07
1 - 2	0.9 - 2.1
2 - 4	1.8 - 4.2
4 - 8	3.6 - 8.5
8-16	7.2 - 17.1
16 - 32	14.4 - 34.3
32 - 64	28.8 - 68.7
64 - 128	57.5 - 137.5
128 - 256	115 - 275
256 - 512	230 - 550
External Doubler Band ¹ 512 - 1024	460 - 1100

Internal Counter Resolution:

Frequency Bands	Normal	Expand	Expand
(MHz)	Mode	X10	X100
0.5 - 1	10 Hz	1 Hz	0.1 Hz
1 - 16	100 Hz	10 Hz	1 Hz
16 - 128	1 kHz	100 Hz	10 Hz
128 - 1024	10 kHz	1 kHz	100 Hz

Accuracy: 6-digit LED display with X10 and X100 expand; accuracy depends on internal or external reference used.

Internal Reference Error $<\pm 2$ ppm (when calibrated at 25°C every 3 months and operated between 15°C and 35°C)

Fine Tuning:

Unlocked: >200 ppm total range. Locked mode: >±20 ppm by varying internal time base vernier.

Stability:

	Normal	Locked ³
Time (after 2-hour warm-up)	<10 ppm/10 min	<0.05 ppm/hr
Temperature	<50 ppm/°C	<2 ppm total ⁴ variation (room ambient 15 to 35°C)
Line Voltage ⁵ (+5% to -10% line voltage change)	<1 ppm	<0.1 ppm
Load (with any passive load change)	<1 ppm	
Level Change (10 dB on output level vernier)	<1 ppm	None measurable
Mode Change (CW to FM)	<1% of selected peak deviation or <200 Hz which- ever is greater	

¹ In the External Doubler Band, the 8640B counter displays the actual doubled output frequency, and the FM meter indicates the proper peak deviation.

When phase locked, Counter Resolution error is eliminated.

³ These specifications are given for the 8640B internal reference. When using an external reference, drift in the locked mode will depend on the external reference characteristics.

⁴ Phase lock may break due to temperature change (i.e., during warm-up). Simply relock at desired frequency.

⁵ This specification is for short term, transient line changes.

Table 1-1. Specifications (2 of 5)

FREQUENCY CHARACTERISTICS (Cont'd)

Restabilization Time:

	Normal	Locked ¹
After frequency change	<15 min	<1 min after relocking to be within
After band change	None	
After 1 min in RF OFF Mode	<10 min	0.1 ppm of steady-state frequency

SPECTRAL PURITY

Harmonics: (at 1 volt, +13 dBm, output range and below)

>35 dB below fundamental of 0.5 to 128 MHz. >30 dB below fundamental of 128 to 512 MHz.

- Subharmonics and Nonharmonic Spurious: (excluding frequencies within 15 kHz of carrier whose effects are specified in Residual AM and FM): >100 dB below carrier.
- Noise: Averaged rms noise level below carrier stated in a 1 Hz bandwidth.
 - SSB Phase Noise at 20 kHz offset from carrier. (See Figures 1-2 and 1-3.)
 - 256 MHz to 512 MHz: >130 dB from 230 to 450 MHz increasing linearly to >122 dB down at 550 MHz.
 - 0.5 MHz to 256 MHz: Decreases approximately 6 dB for each divided frequency range until it reaches SSB Broadband Noise Floor of >140 dB.
 - SSB Broadband Noise Floor at maximum vernier greater than 500 kHz offset from carrier. (See Figures 1-2 and 1-3.)
 0.5 to 512 MHz: >140 dB.

Residual AM: (Averaged rms)

Post-detection Noise Bandwidth			
300 Hz to 3 kHz 20 Hz to 15 kHz			
>85 dB down	>78 dB down		

Residual FM: (Averaged rms)

	CW and up to 1/8 maximum allowable peak deviation		Up to maxi- mum allowable peak deviation	
Post-detection Noise Bandwidth	300 Hz to 3 kHz	20 Hz to 15 kHz	300 Hz to 3 kHz	20 Hz to 15 kHz
230 to 550 MHz	<5 Hz	<15 Hz	<15 Hz	<30 Hz

Note: Residual FM decreases by approximately $\frac{1}{2}$ for each divided frequency range until limited by broadband noise floor. This limit for 300 Hz to 3 kHz is about 1 Hz, and for 20 Hz to 15 kHz is about 4 Hz. These are measured values in the 230 to 550 MHz range and calculated for divided ranges, knowing the noise distribution.

OUTPUT CHARACTERISTICS

Range: 10 dB steps and 18 dB vernier provide output power settings from +19 to -145 dBm (2V to $0.013 \,\mu$ V) into 50Ω . Level Flatness: $<\pm 0.5$ dB from 0.5 to 512 MHz referred to output at 50 MHz. (Flatness applies to +13 to -7 dBm and for top 10 dB of vernier range.)

¹ These specifications are given for the 8640B internal reference. When using an external reference, drift in the locked mode will <u>depend on the external reference characteristics</u>.

Table 1-1. Specifications (3 of 5)

OUTPUT CHARACTERISTICS (Cont'd)

Impedance: 50Ω , ac coupled, 40 Vdc maximum, VSWR <2.0 on 2V and 1V output ranges; <1.3 on all other ranges.

- Reverse Power: 20 dBm maximum on 2V and 1V output ranges; 30 dBm maximum on all other ranges.
- Auxiliary Output: Rear panel BNC output is >-5 dBm into 50 Ω , source impedance is approximately 500 Ω .
- Leakage: (With all unused outputs terminated properly.) Leakage limits are below those specified in MIL-I-6181D. Furthermore, less than $3 \mu V$ is induced in a 2-turn, 1-inch diameter loop 1 inch away from any surface and measured into a 50 Ω receiver. This permits receiver sensitivity measurements to at least <0.03 μV in a shielded system.

Level Accuracy:

	Using Top 10 dB of Vernier Range			Using Full Vernier Range
Output Level (dBm)	+19 to -7	7 to 47	-47 to -137	+19 to 145
Total Accuracy as Indicated on Level Meter	±1.5 dB	±2.0 dB	±2.5 dB	Add ±0.5 dB
Note: Level Accuracy error consists of allow- ances for: meter accuracy, detector linearity, tem- perature, flatness, attenuator accuracy, and twice the measurement error. All but the attenuator accuracy and the measurement error can be cali- brated out with a power meter at a fixed fre- quency and a fixed vernier setting.				

MODULATION CHARACTERISTICS

General

- Types: Internal AM and FM. External AM, FM, and PULSE. Simultaneous AM and FM or PULSE and FM.
- Internal Modulation Sources: (independently adjustable output is available at front panel).

Standard:

Frequency: Fixed 400 Hz and 1 kHz, $\pm 2\%$. Output Level: Indicated 10 mV to 1 Vrms into 600Ω . **Optional:** (Internal Variable Audio Oscillator Option 001).

Frequency: Variable 20 Hz to 600 kHz, $\pm 10\%$ in 5, decade continuous bands plus fixed 400 Hz and 1 kHz $\pm 2\%$.

Output Level: 20 mV to 3V into 600Ω .

Total Harmonic Distortion:

<0.25%	400 Hz and 1 kHz fixed tones
<0.5%	20 Hz to 2 kHz
<1.0%	2 kHz to 600 kHz

Amplitude Modulation

(AM specifications apply to the top 10 dB of output vernier range unless otherwise specified.)

- **Depth:** 0 to 100% for output level range of +13 dBm and below and for top 10 dB of vernier range.¹
- AM Rates: INT and EXT ac; 20 Hz to AM 3 dB bandwidth below. EXT dc; dc to AM 3 dB bandwidth below.

AM 3 dB Bandwidth: (See Figure 1-4).

Frequency	0 to	50 to
Bands	50% AM	90% AM
0.5 - 2 MHz	20 kHz	12.5 kHz
2 - 8 MHz	40 kHz	25 kHz
8 - 512 MHz	60 kHz	50 kHz

AM is possible above +13 dBm as long as the combination of the AM depth plus carrier output level does not exceed +19 dBm.

Table 1-1. Specifications (4 of 5)

MODULATION CHARACTERISTICS (Cont'd)

Amplitude Modulation (Cont'd)

AM Distortion: (at 400 Hz and 1 kHz rates)

Frequency	0 to	50 to
Bands	50% AM	90% AM
0.5 to 512 MHz	<1%	<3%

External AM Sensitivity: (400 Hz and 1 kHz rates) (0.1 \pm 0.005)% AM per mV peak into 600 Ω with AM vernier at full CW position. Indicated AM Accuracy: (400 Hz and 1 kHz rates using internal meter)

 $\pm 8\%$ of reading on 0 - 10 scale.

 $\pm 9\%$ of reading on 0 - 3 scale (for greater than 10% of full scale).

Peak Incidental PM (at 30% AM) Less than 0.15 radians, 0.5 to 128 MHz. Less than 0.3 radians, 128 to 512 MHz.

Peak Incidental Frequency Deviation: Equals PEAK INCIDENTAL PM x MODULATION RATE.

Pulse Modulation
(Specifications apply for top 10 dB of output vernier range.)

Frequency Bands (MHz)	0.5 - 1	1 - 2	2 - 8	8 - 32	32 - 512
Rise and Fall Times	<9 μs	<4 μs	<2 μs	<	1 μs
Pulse Repetition Rate		Iz to kHz	50 Hz to 100 kHz	50 Hz to 250 kHz	50 Hz to 500 kHz
Pulse Width Minimum for level accuracy within 1 dB of CW (>0.1% duty cycle)	10 μs 5 μs 2 μs				
Pulse ON/OFF ratio at maxi- mum vernier	>40 dB				
Peak Input Required		Nominally +0.5V (+5V max) waveform, return to zero, into 50Ω Schmitt trigger.			

Frequency Modulation

Deviation: Maximum allowable deviation equals 1% of lowest frequency in each band as below.

Frequency Band (MHz)	Maximum Peak Deviation (kHz)
0.5 - 1	5
1 - 2	10
2 - 4	20
4 - 8	40
8 - 16	80
16 - 32	160
32 - 64	320
64 - 128	640
128 - 256	1280
256 - 512	2560
512 - 1024	5120

FM 3 dB Bandwidth:¹

Internal and External ac; 20 Hz to 250 kHz. External dc; dc to 250 kHz.

- **FM Distortion:** (at 400 Hz and 1 kHz rates) See Figure 1-6.
 - <1% for deviations up to 1/8 maximum allowable. <3% for maximum allowable deviation.
- **External FM Sensitivity:** 1 volt peak yeilds maximum deviation indicated on PEAK DEVIATION switch with FM vernier at full CW position.
- **External FM Sensitivity Accuracy:** $\pm 6\%$ from 15 to 35°C for FM excluding maximum peak deviation position. Maximum peak deviation position, $\pm 9\%$ typically.

¹ With 8640B in LOCKED MODE, external FM is possible only for rates greater than 50 Hz.

Table 1-1. Specifications (5 of 5)

		MODUL	ATION CHAR	ACTERISTICS (Cont'd)
		ł	Frequency Mod	ulation (Cont'd)
	nd 1 kHz		nternal meter) than 10% of	 Incidental AM: (at 400 Hz and 1 kHz rates) <0.5% AM for FM up to 1/8 maximum allowable deviation. <1% AM for FM at maximum allowable deviation.
		С	OUNTER CHA	ARACTERISTICS
External RF In	put:			Internal Reference Characteristics: (after 2-hr. warm-up)
Sensitivity:	100 mVrms	z to 550 MHz. , ac only, into 5 rms (+15 dBm)	0Ω (—7 dBm).	Accuracy: (after calibration at 25°C) Better than ±1 ppm for 15 to 35°C. Better than ±3 ppm for 0 to 55°C.
	-	on: 6-digit LE		Drift Rate: Time: <0.05 ppm per hr, <2 ppm per year. Temperature: <2 ppm total variation for room
Mode	Normal	Expand X10	Expand X100	ambient 15 to 35°C. Line Voltage: <0.1 ppm.

Frequency Tuning:

 $>\pm 20$ ppm using internal time base vernier.

Rear Output: nominally >0.5 Vp-p into 500 Ω . This will drive another 8640B.

GENERAL CHARACTERISTICS

Operating Temperature Range: 0 to 55°C.

100 Hz

10 kHz

(5V maximum) into 1000Ω .

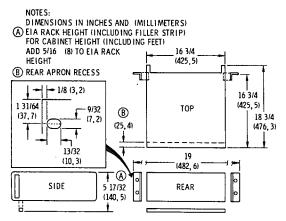
Power Requirements: 100, 120, 220, and 240 volts, +5%, -10%, 48 to 440 Hz; 175 VA maximum. 7½ ft. (2,29 m) power cable furnished with mains plug to match destination requirements.

External Reference Input: 5 MHz, nominally >0.5 Vp-p

10 Hz

1 kHz

1 Hz


 $100 \ Hz$

Weight: Net, 45 lb (20,4 kg).

0 - 10 MHz

0 - 550 MHz

Dimensions:¹

Dimensions are for general information only. If dimensions are required for building special enclosures, contact your HP office.

с¥ За

1

É

 $\langle \rangle$

.

ų.

Instrument Type	Critical Specifications	Suggested Model	Use*
Adjustable Stub	Length: >50 cm Range: to 550 MHz	GR 874-D50L	Р
20 dB Amplifier (3 required)	Range: $0.5 - 520 \text{ MHz}$ Gain: 20 to 25 dB Flatness over Range: $\pm 2 \text{ dB}$ Impedance: 50Ω Noise Figure: $<5 \text{ dB}$	HP 8447A	P,A
20 dB Amplifier	Range: 400 - 1200 MHz Gain: >20 dB Flatness: ±2 dB Impedance: 50Ω Noise Figure: <5 dB to 1 GHz	HP 8447B	Р
40 dB Amplifier	Range: 5 Hz to 100 kHz Gain: 20 and 40 dB ±1 dB Input Impedance: >5 k Ω Output Impedance: 50 Ω Noise: <25 μ Vrms referred to input Output: >1 Vrms into 50 Ω	HP 465A	P,A
40 dB Amplifier	Range: 20 Hz to 100 kHz Gain: 40 ±1 dB Input Impedance: 50Ω Noise Figure: <3 dB when driven from 50Ω Output Level: >100 mV in 50Ω	HP 08640-60506	P
One-Inch Loop Antenna	To ensure measurement accuracy, no substitution is possible. Fabrication depends upon machining and assem- bling to very close tolerances.	HP 08640-60501	Р
10 dB Step Attenuator	Attenuation: 0 - 120 dB in 10 dB steps Range: 0.45 - 550 MHz Accuracy: ±1.5 dB to 90 dB ±0.3 dB to 120 dB (below 1 kHz)	HP 355D	P,A
Calibrated Step Attenuator	Attenuation: 0 - 120 dB in 10 dB steps Accuracy: ± (0.02 + 0.015 dB/10 dB step) at 3 MHz	HP 355D Option H36	P,A

Table 1-2.	Recommended	Test Equipment (2	l of 7)
------------	-------------	-------------------	---------

1-13

Instrument Type	Critical Specifications	Suggested Model	Use*
3 dB Attenuator	Accuracy: ±0.5 dB to 550 MHz	HP 8491A Option 003	P,A
10 dB Attenuator	Accuracy: ±0.5 dB to 550 MHz	HP 8491A Option 010	P,A
20 dB Attenuator	Accuracy: ±0.5 dB to 550 MHz	HP 8491A Option 020	P,A
Crystal Detector	Range: 0.45 - 550 MHz Low Level Sensitivity: >0.35 mV/µW No internal dc return	HP 8471A	Р
Crystal Detector	Range: 10 - 550 MHz Maximum Sensitivity: at 15 - 17 dBm input With internal dc return	HP 423A	Р
Digital Voltmeter DC Accuracy: ± (0.01% of reading +0.02% of range) AC (True RMS) Accuracy: ±0.1% of reading Ohms Range: to 1 kΩ		HP 3480B/ 3484A (with Options 042, 043)	P,A,T
Digital to Analog ConverterAccuracy: 1% of full scale Input Code: 1248 with 1 (on) state positive (compatible with Fre- quency Counter) Output: Compatible with Strip Chart Recorder		HP 581A Option 002	Р
Directional Coupler	Range: 100 - 550 MHz Coupling Attenuation: 20 dB Directivity: 36 dB VSWR: <1.1:1	HP 778D Option 12	Р
Distortion Analyzer	Range: 20 Hz to 600 kHz Distortion Range: <0.1% Minimum Input: <300 mVrms	HP 333A	Р
FM Discriminator	Ranges: 100 kHz to 10 MHz Linear Analog Output: 1V for full scale	HP 5210A	P,A

Table 1-2. Recommended Test Equipment (2 of 7)

S

))

4

5

1-14

÷.

Instrument Type	Critical Specifications	Suggested Model	Use*
With Filter Kit	Output Low Pass Filters for FM Dis- criminator (20 kHz and 1 MHz Butterworth filters)	With HP 10531A	P,A
600 Ohm Feedthrough	Impedance: $600\Omega \pm 1\%$ shunt Connectors: BNC	HP 11095A	P,A
520 MHz Notch Filter	Notch Frequency Accuracy: 500 - 540 MHz Notch Rejection: >60 dB See Figure 1-7	HP 08640-60502	Р
4 MHz Low Pass Filter (2 required)	4 MHz low pass (3 pole) Impedance: 50Ω VSWR: <1.5:1 Ripple: <±0.2 dB	CIR-Q-TEL FLT/21B-4-3/ 50-3A/3B	P,A
1.5 MHz Low Pass Filter	1.5 MHz low pass (3 pole) Impedance: 50Ω VSWR: <1.5:1 Ripple: < ± 0.2 dB	CIR-Q-TEL FLT/21B- 1500K-3/50- 3A/3B	P,A
15 kHz Low Pass Filter	15 kHz low pass (7 pole) Impedance: 50Ω Ripple: <±0.2 dB	CIR-Q-TEL FLT/21B-15K- 7/50-3A/3B	Р
3 kHz Low Pass Filter	3 kHz low pass (5 pole) Impedance: 50Ω Ripple: <±0.2 dB	CIR-Q-TEL FLT/21B-3K- 5/50-3A/3B	Р
Frequency Counter	Range: to 550 MHz Input Sensitivity: $<100 \text{ mV}$ Inputs: 50 Ω and high impedance (1 M Ω) Standard Reference Accuracy: $<3 \times 10^{-7}$ /month aging rate $<5 \times 10^{-9}$ /s rms short term stability $<\pm 2.5 \times 10^{-6}$, 0 - 50°C temper- ature stability	HP 5327C	P,A,T
	Optional Reference Accuracy: $<3 \ge 10^{-9}$ /day aging rate $<1 \ge 10^{-10}$ /s rms short term stability $<1 \ge 10^{-8}$, 0 - 50°C temper- ature stability	Option H49	Ρ

Table 1-2. Recommended Test Equipment (3 of 7,	Table 1-2.	Recommended	Test	Equipment (S	3 of 7)
--	------------	-------------	------	--------------	---------

1-15

r

Instrument Type	Critical Specifications	Suggested Model	Use*
Frequency Counter (Cont'd)	Optional Digital Output: 1248 with 1 (on) state positive (compatible with D/A Converter)	Option 003	Р
Function Generator	Range: 0.1 Hz to 1 kHz Output Impedance: 600Ω Output Level: >1 Vpk	HP 3300A	P,A
FM Linearity Circuit	See Figure 1-8	HP 08640-60503	A
Mixer (3 required)	Double Balanced Range: 0.45 - 550 MHz	HP 10514A	P,A
Noise Phase Lock Circuit	See Figure 1-9	HP 08640-60504	Р
Oscilloscope	50 MHz Real Time Sensitivity: 5 mV/division Internal/External Sweep and Triggering	HP 180A/1801A/ 1820C	P,A,T
Power Meter	Range: 0.45 - 550 MHz Input: -20 to +10 dBm Accuracy: 1%	HP 432A	P,A,T
With Thermistor Mount	VSWR: <1.3:1	With HP 478A Option H63	
Power Meter	Range: 10 - 550 MHz Input Level: -10 to +20 dBm Accuracy: ±1% of reading	HP 435A	P,A
With Power Sensor (Thermocouple)	VSWR: <1.18:1	With HP 8481A	
Pulse Generator	Range: 50 Hz to 500 kHz Output: >1V into 50 Ω Pulse Width: down to 1 μ s Transition Time: <50 ns	HP 8003A	P,T
Quartz Oscillator	Output: 1 MHz (level compatible with Frequency Counter) Stability: <5 x 10 ⁻¹⁸ /24 hours <5 x 10 ⁻¹² /s	HP 105B	Р

Table 1-2. Recommended Test Equipment (4 of 7)

* P = Performance; A = Adjustments; T = Troubleshooting

36

Ô.

))

in the

~

)

Instrument Type	Critical Specifications	Suggested Modei	Use*
RMS Voltmeter	Range: 10 Hz to 100 kHz Reading: True rms (ac only) Voltage Range: 1 mV to 10V full scale Accuracy: 1% of full scale 50 Hz to 50 kHz Scale: Voltage and dB	HP 3400A	Р
Signal Generator	Range: $0.45 - 550$ MHzOutput: >13 dBm into 50Ω Drift: <20 ppm/10 min.	HP 8640A	P,A
Audio Spectrum Analyzer	 Range: 20 - 200 kHz Amplitude Calibration: Display Accuracy: ±0.25 dB/dB but not more than 1.5 dB over 70 dB dynamic range Flatness: ±0.2 dB Vertical Reference Scale: 10 dB/ division log, 2 dB/division (or less) log, and linear display calibration Average Noise Level: <-120 dBm (50Ω) with 1 kHz IF bandwidth Spurious Responses: >60 dB down for nominal specified inputs 	HP 141T/ 8552B/8556A	P

Table 1-2. Recommended Test Equipment (5 of 7)

* P = Performance; A = Adjustments; T = Troubleshooting

.

Ô

Ø

Q

Instrument Type	Critical Specifications	Suggested Model	Use*	
Audio Spectrum Analyzer (Cont'd)	Tracking Generator: Flatness: ±0.25 dB Level: >3 Vrms into 600Ω	u 		
Spectrum Analyzer	 Range: 0.5 - 1200 MHz Amplitude Calibration: Display Accuracy: ±0.25 dB/dB but not more than 1.5 dB over 70 dB dynamic range Flatness: ±1 dB IF Gain Step Accuracy: ±0.2 dB Vertical Reference Scale: 10 dB/ division log, 2 dB/division (or less) log, and linear display calibration Average Noise Level: <-102 dBm with 10 kHz IF bandwidth Spurious Responses: >60 dB down for inputs of -40 dBm or less Span Width: 0 - 1 GHz Compatible with Tracking Generator 	HP 141T/ 8552B/8554B	P,A P,A	
Spectrum Analyzer	Range: 0.45 - 100 MHz IF Bandwidths: down to 10 Hz All other specifications are the same as the HP 141T/8552B/8554B listed above except Span Width which should be 0 - 100 MHz (should be compatible with Tracking Generator).	HP 141T/ 8552B/8553B		
Recorder (Strip Chart)	Compatible with Digital to Analog Converter Accuracy: 0.5% of full scale	HP 680	Р	
Temperature Controlled Chamber	Range: 0 - 55°C	Statham Model 325	Р	
Test Oscillator	Range: 20 Hz to 600 kHz Output Impedance: 600Ω and 50Ω Distortion: >40 dB down Output Level: >1 Vrms	HP 652A	P,A,T	

Table 1-2. Recommended Test Equipment (6 of 7)

Instrument Type	Critical Specifications	Suggested Model	Use*	
Tracking Generator	Output: to 0 dBm (50Ω) Flatness: ±0.5 dB Compatible with Spectrum Analyzer (HP 141T/8552B/8554B)	HP 8444A		
Tracking Generator	Output: to 0 dBm (50Ω) Compatible with Spectrum Analyzer, (HP 141T/8552B/8553B)	HP 8443B	P,A	
Variable Phase Oscillator	Range: 20 Hz to 60 kHz Output Impedance: 600Ω Phase Variability: 0 to 360° Distortion: >64 dB down	HP 203A	P,A	
Variable Voltage Transformer	Range: +5% to -10% of nominal line voltage (100, 120, 220 or 240 volts). For 120V, range is 105 - 130 Vrms. Metered Accuracy: ±1 Vrms	GR W5MT3A	Р	
Vector Voltmeter	 Range: 1 - 550 MHz Sensitivity: <20 μV Phase Range: ±18° full scale down to ±6° full scale Phase Resolution: 0.1° Phase Accuracy: ±1.5° Voltage Ratio Accuracy: 0.2 dB 	HP 8405A	P	
VSWR Bridge	Range: 0.45 - 550 MHz Directivity: >40 dB Connectors: Type N	Wiltron Model 60N50	P	

.

Table 1-2. Recommended Test Equipment (7 of 7)

.

Accessory Type	Suggested Model
Adapter (Type N Male and BNC Female connectors)	HP 1250-0067
Adapter (BNC Male and dual Banana post connectors)	HP 10110A
Adapter (two SMC Male connectors)	HP 1250-0827
Double Shielded Cable (BNC Male connectors, Coaxial)	HP 08708-6033
Nine-Inch Cable (BNC Male connectors, Coaxial)	HP 10502A
Test Cable (48-inch, BNC Male connectors, Coaxial)	HP 10503A
Test Cable (SMC Male and BNC Male connectors)	HP 11592-60001
50 Ohm Load (Male, BNC, Coaxial)	HP 11593A
Coaxial Short (Male Type N)	HP 11512A
Tee (Coaxial, BNC, one Male and two Female connectors)	HP 1250-0781
Voltage Probe (1:1)	HP 10025A
Extender Board (20 pins)	HP 5060-0827
Bumpers (2) for Extender Board	HP 0403-0115
$5 \mu F$ Capacitor	HP 0180-2211
100 μ F Capacitor	HP 0180-0094
$0.001 \mu F$ Capacitor	HP 0160-0153
$0.033 \mu\mathrm{F}\mathrm{Capacitor}$	HP 0160-0163
100 kΩ Resistor	HP 0757-0465
$10 \text{ k}\Omega$ Resistor	HP 0757-0442
SPST Switch	HP 3101-0163

Table 1-3. Recommended Test Accessories

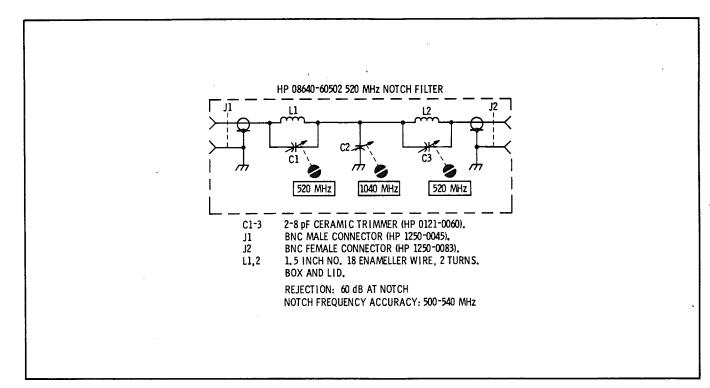


Figure 1-7. 520 MHz Notch Filter

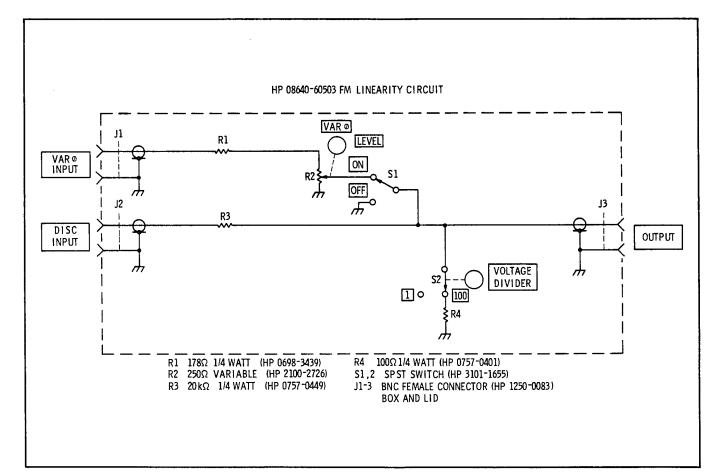


Figure 1-8. FM Linearity Circuit

ŧ

ĵ

Ĭ)

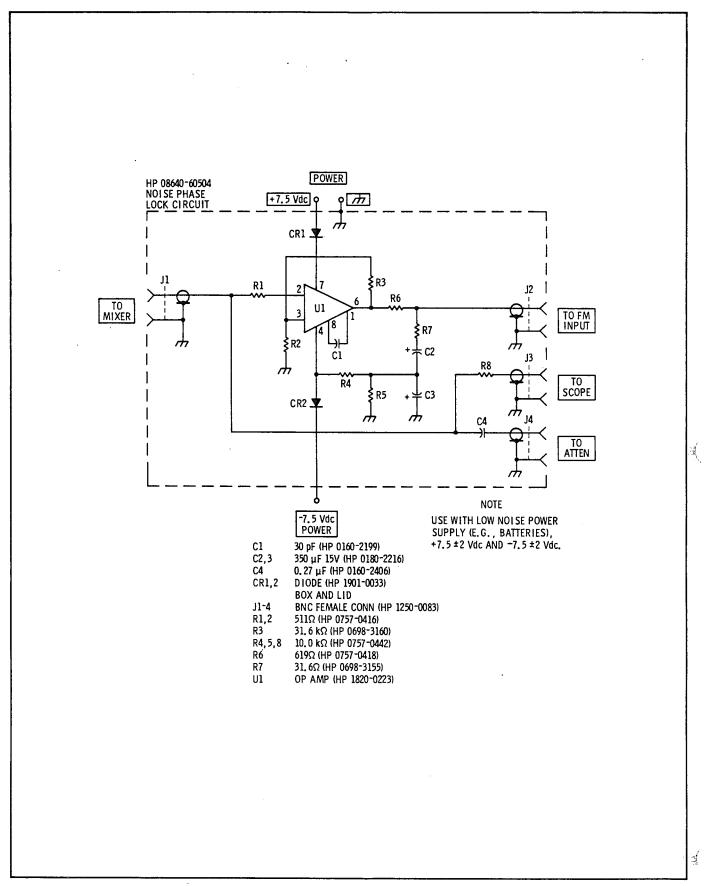


Figure 1-9. Noise Phase Lock Circuit

SECTION II

2-1. INTRODUCTION

2-2. This section explains how to prepare the Model 8640B Signal Generator for use. It explains how to connect the instrument to accept available line voltage, and it also describes bench operation, rack mounting, storage, and shipment.

2-3. INITIAL INSPECTION

2-4. Inspect the shipping container for damage. If the shipping container or cushioning material is damaged it should be kept until the contents of the shipment have been checked for completeness and the instrument has been checked mechanically and electrically. The contents of the shipment should be as shown in Figure 1-1, and procedures for checking electrical performance are given in Section IV. If the contents are incomplete, if there is mechanical damage or defect, or if the instrument does not pass the electrical performance test, notify the nearest Hewlett-Packard office. If the shipping container is damaged, or the cushioning material shows signs of stress, notify the carrier as well as the Hewlett-Packard office. Keep the shipping materials for carrier's inspection. The HP office will arrange for repair or replacement without waiting for claim settlement.

2-5. PREPARATION FOR USE

2-6. Power Requirements

2-7. The Model 8640B requires a power source of 100, 120, 220, or 240 Vac +5-10%, 48 to 440 Hz, single phase. Power consumption is 175 VA maximum.

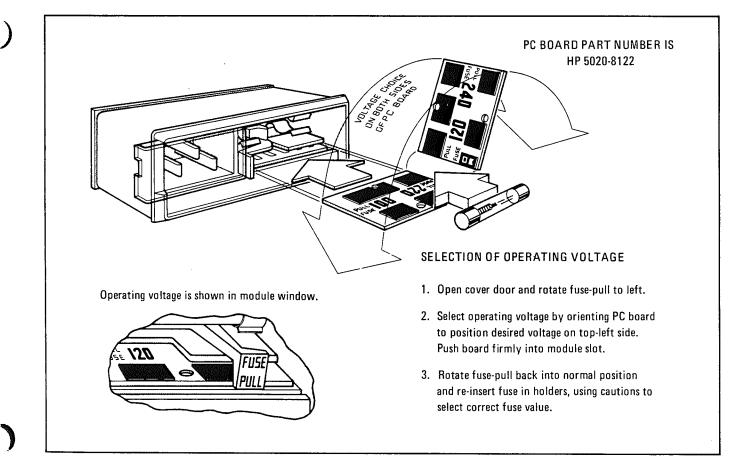


Figure 2-1. Line Selector

2-8. Line Voltage Selection

To prevent damage to the instrument, make the line voltage selection *before* connecting line power. Also ensure the the line power cord is connected to a line power socket that is provided with a protective earth contact.

2-9. A rear panel, line power module permits operation from 100, 120, 220, or 240 Vac. The number visible in the window (located on the module) indicates the nominal line voltage to which the instrument must be connected.

2-10. To prepare the instrument for operation, slide the fuse compartment cover to the left (the line power cable should be disconnected). Pull the handle marked FUSE PULL and remove the fuse; rotate the handle to the left. Gently pull the printed circuit voltage selector card from its slot and orient it so that the desired operating voltage appears on the top-left side (see Figure 2-1). Firmly push the voltage selector card back into its slot. Rotate the FUSE PULL handle to the right, install a fuse of the correct rating, and slide the fuse compartment cover to the right. A complete set of fuses is supplied with the instrument - see ACCESSORIES SUPPLIED in Section I.

NOTE

The correct fuse rating for the line voltage selected in listed on the line power module. More information about fuses is given in the table of replaceable parts in Section VI (reference designation is F1).

2-11. Power Cable

2-12. In accordance with international safety standards, this instrument is equipped with a three-wire power cable. When connected to an appropriate power line outlet, this cable grounds the instrument cabinet. The type of power cable plug shipped with each instrument depends on the country of destination. Refer to Figure 2-2 for the part numbers of the power cable plugs available.

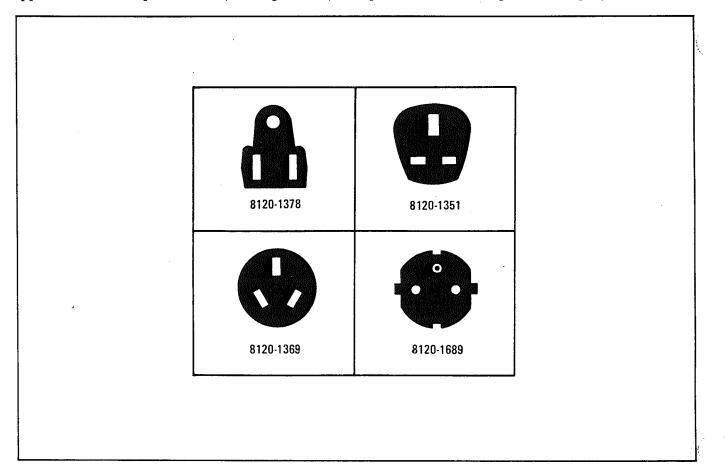


Figure 2-2. Power Cables Available

WARNING

To avoid the possibility of injury or death, the following precautions must be followed before the instrument is switched on:

a. If this instrument is to be energized via an autotransformer for voltage reduction, make sure that the common terminal is connected to the earthed pole of the power source.

b. The power cable plug shall only be inserted into a socket outlet provided with a protective earth contact. The protective action must not be negated by the use of an extension cord without a protective conductor (grounding).

c. Before switching on the instrument, the protective earth terminal of the instrument must be connected to a protective conductor of the power cord. This is accomplished by ensuring that the instrument's internal earth terminal is correctly connected to the instrument's chassis and that the power cord is wired correctly (see Service Sheet 22).

2-13. Mating Connectors

2-14. Mating connectors used with the Model 8640B should be either 50 ohm-type BNC male or Type N male connectors that are compatible with US MIL-C-39012.

2-15. Operating Environment

2-16. The operating environment should be within the following limitations:

Temperatu	ır	е			•				0° C to +55°C
Humidity		•		•					<95% relative
Altitude	•			•	•				<15,000 feet

2-17. A forced-air cooling system is used to maintain the operating temperature required within the instrument. The air intake and filter are located on the rear panel, and warm air is exhausted through perforations in the right-hand side panel. When operating the instrument, choose a location that provides at least three inches of clearance at the rear and two inches clearance at the right side. The clearances provided by the plastic feet in bench stacking and the filler strips in rack mounting are adequate for the top and bottom cabinet surfaces.

2-18. Bench Operation

2-19. The instrument cabinet has plastic feet and a foldaway tilt stand for convenience in bench operation. The tilt stand raises the front of the instrument for easier viewing of the control panel, and the plastic feet are shaped to make full-width modular instruments self-aligning when stacked.

2-20. Rack Mounting

2-21. This instrument is supplied with a rack mounting kit. This kit contains all the necessary hardware and installation instructions for mounting the instrument on a rack with 19 inch spacing (see Figure 2-3).

2-22. STORAGE AND SHIPMENT

2-23. Environment

2-24. The instrument should be stored in a clean, dry environment. The following environmental limitations apply to both storage and shipment:

Temperate	ur	е			•			•		•		•		40° C to $+75^{\circ}$ C
Humidity		•	•		•				•			•	•	<95% relative
Altitude	•	•	•	•	•	•	•				•	•	•	<25,000 feet

2-25. Packaging

2-26. Original Packaging. Containers and materials identical to those used in factory packaging are available through Hewlett-Packard offices. If the instrument is being returned to Hewlett-Packard for servicing, attach a tag indicating the type of service required, return address, model number, and full serial number. Also, mark the container FRAGILE to assure careful handling. In any correspondence, refer to the instrument by model number and full serial number.

2-27. Other Packaging. The following general instructions should be used for re-packaging with commerically available materials:

a. Wrap the instrument in heavy paper or plastic. (If shipping to a Hewlett-Packard office or service center, attach a tag indicating the type of service required, return address, model number, and full serial number.) b. Use a strong shipping container. A doublewall carton made of 350-pound test material is adequate.

c. Use enough shock-absorbing material (3to 4-inch layer) around all sides of the instrument to provide a firm cushion and prevent movement inside the container. Protect the control panel with cardboard.

d. Seal the shipping container securely.

e. Mark the shipping container FRAGILE to assure careful handling.

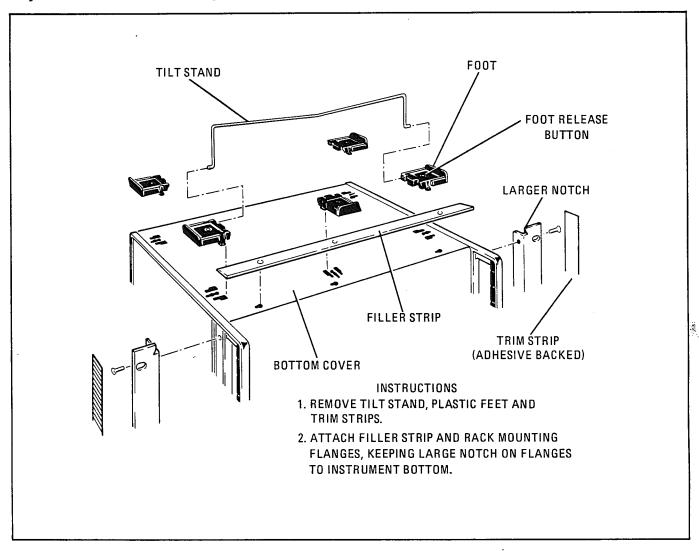


Figure 2-3. Preparation for Rack Mounting

SECTION III OPERATION

3-1. INTRODUCTION

3-2. This section describes the functions of the controls and indicators of the Model 8640B Signal Generator. It explains how to set the frequency, amplitude, and modulation controls, and covers such operator maintenance as fuse and indicator lamp replacement and fan filter cleaning.

3-3. PANEL FEATURES

3-4. Front panel controls, indicators, and connectors are shown and described in Figure 3-2. Rear panel controls and connectors are shown and described in Figure 3-3.

3-5. OPERATOR'S CHECKS

3-6. Use the operator's checks in Figure 3-4 to verify proper operation of the Signal Generator's main functions.

3-7. OPERATING INSTRUCTIONS

3-8. Figures 3-5 and 3-6 explain how to set the frequency, amplitude, and modulation controls. Figure 3-5 also explains how to use the frequency counter and phase lock controls.

3-9. OPERATOR'S MAINTENANCE

3-10. Fuse. The main ac line fuse is located on the rear panel next to the line power cable jack. To remove the fuse, first remove the line power cable from its jack. Slide the fuse compartment cover to the left, then pull the handle marked FUSE PULL and remove the fuse.

Be sure to select the correct fuse rating for the selected line voltage (see LINE VOLTAGE SELECTION in Section II); fuse ratings are listed on the fuse compartment.

3-11. Fan. The cooling fan's filter is located on the rear panel. To service the fulter use a No. 2 Pozidriv screwdriver (HP 8710-0900) to remove the four screws that hold the filter to the rear

panel. Then clean it, using a solution of warm water and soap, or replace it, using the part number listed in the table of replaceable parts in Section VI.

3-12. The fan motor has factory lubricated, sealed bearings and requires no periodic maintenance.

3-13. Lamp Replacement. Figure 3-1 explains how to replace the lamp located in the line power switch.

3-14. Meter Zeroing. To mechanically zero the front panel meter, set LINE switch to OFF and place instrument in its normal operating position. Turn adjustment screw cw until indicator indicates zero, then turn adjustment slightly ccw to free mechanism from adjusting peg.

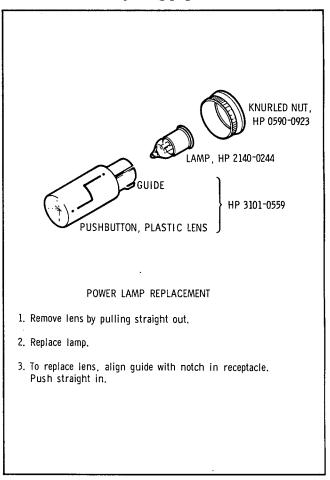
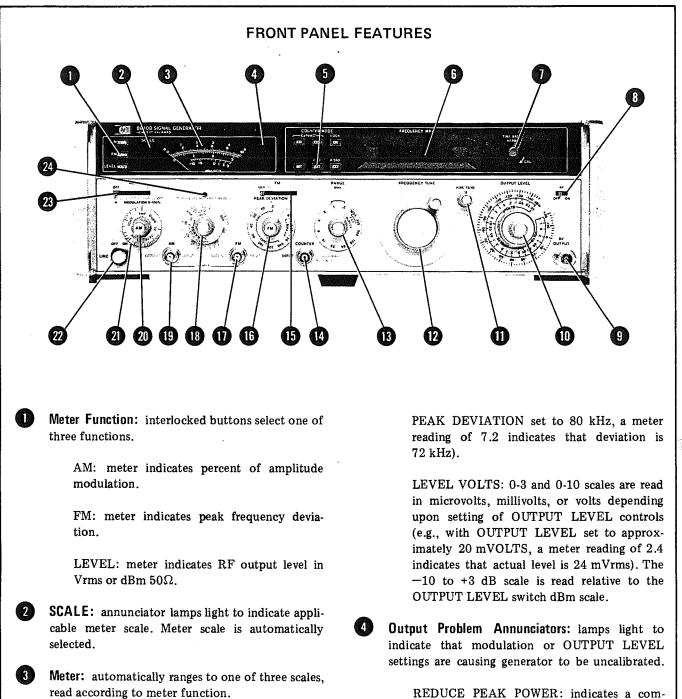



Figure 3-1. Lamp Replacement

AM X 10 %: 0-3 scale is read 0-30%; 0-10 scale is read 0-100%.

FM kHz/MHz: 0-3, 0-5, and 0-10 scales are read in kHz or MHz, depending upon setting of PEAK DEVIATION switch (e.g., with REDUCE PEAK POWER: indicates a combination of OUTPUT LEVEL setting and amplitude modulation that exceeds +19 dBm power output.

REDUCE FM VERNIER: indicates that an external FM input level or vernier setting is causing FM deviation to exceed limits.

```
Figure 3-2. Front Panel Controls, Indicators, and Connectors (1 of 4)
```

(5)

6

Ð

FRONT PANEL FEATURES

REDUCE PEAK DEVIATION: indicates PEAK DEVIATION setting is too high for the selected frequency range.

COUNTER MODE: Buttons control operation of frequency counter.

EXPAND: X10 expands resolution one digit, moving the decimal point one place to the left; X100 expands resolution two digits, moving the decimal point two places to the left.

NOTE

EXPAND X10 and EXPAND X100 buttons are interlocked so that only one button can be depressed at a time.

LOCK: phase locks Signal Generator to the internal (or to an external) crystal refernce. Display indicates lock frequency; loss of lock causes display to flash and indicate actual frequency of Signal Generator.

INT: programs counter to count frequency of Signal Generator.

EXT 0-10, EXT 0-550: programs counter to count frequency of signal at COUNTER IN-PUT jack; also selects counter frequency range in MHz.

FREQUENCY MHz: counter readout indicates RF frequency in MHz. Flashing display indicates loss of phase lock. The OVERFLOW lamp lights to indicate that significant data is not being displayed.

TIME BASE VERNIER: used as a fine frequency tune when in lock mode to give continuous tuning between lock points (the use of the COUNTER MODE EXPAND X10 control is necessary on some ranges to tune over the full range). When control is not in CAL position, the UNCAL lamp lights to indicate that the counter is uncalibrated.

- **RF ON/OFF:** enables or disables the RF output.
- **RF OUTPUT:** RF output through Type N female connector. (Connector meets US MIL-C-39012.) 50 ohm ac coupled source impedance.

CAUTION

Any interrruption of the protective (grounding) conductor inside or outside the instrument is likely to cause damage to the instrument. To avoid damage, this instrument and all line powered devices connected to it must be connected to the same earth ground (see Section II).

OUTPUT LEVEL: the switch controls a 10 dB m step attenuator that sets the output level range. Calibrated concentric vernier sets actual output level within an 18 dB range (the meter gives additional resolution).

NOTE

For optimum operation, use the vernier in the top 10 dB of its range.

- **(()** FINE TUNE: fine frequency control.
 - FREQUENCY TUNE: coarse frequency control.
- B **RANGE:** selects one of ten octave frequency bands. The 512-1024 MHz/Doubler position gives 256-512 MHz at RF OUTPUT, but the FRE-QUENCY MHz readings and FM meter indications are corrected for use with an RF doubler connected to RF OUTPUT.

COUNTER INPUT: external input to frequency counter; impedance is 50 ohms.

Do not apply a dc voltage or >+15 dBm to COUNTER INPUT.

(12)

Ø

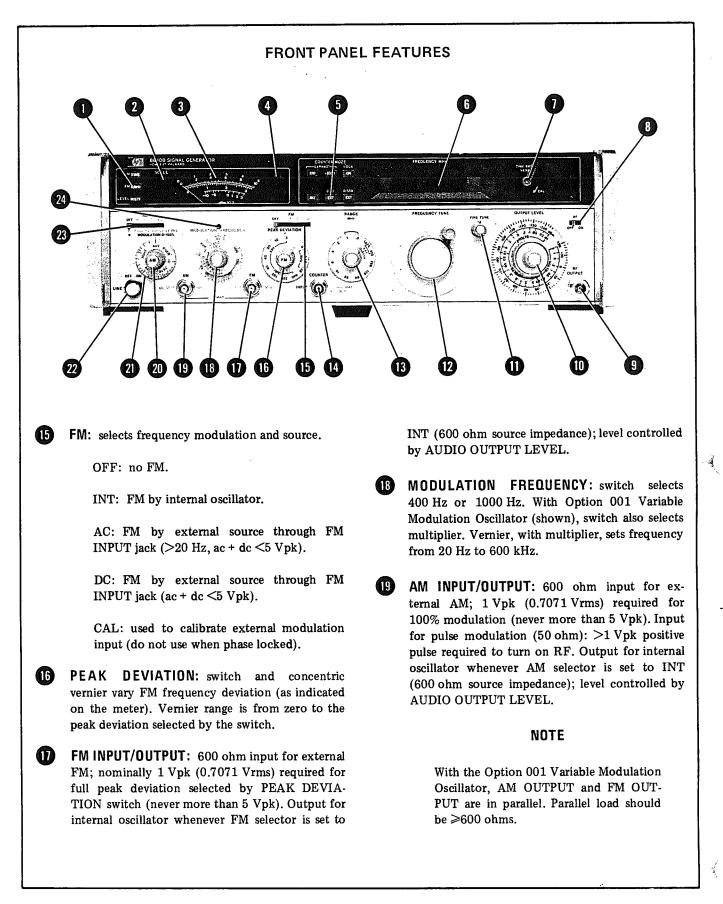


Figure 3-2. Front Panel Controls, Indicators, and Connectors (3 of 4)

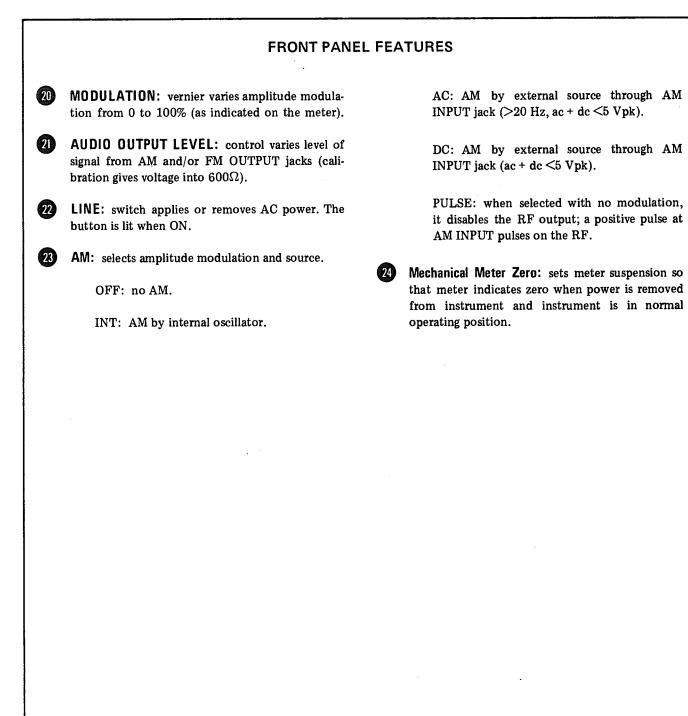
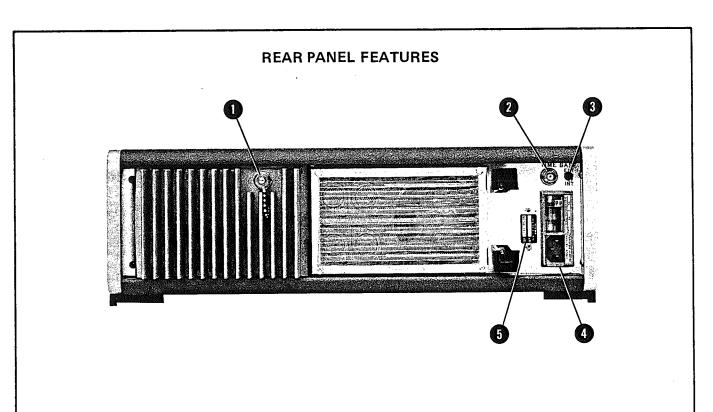



Figure 3-2. Front Panel Controls, Indicators, and Connectors (4 of 4)

AUX RF OUT: nominal -5 dBm auxiliary RF output; 500 ohm source impedance. Signal does not contain amplitude or pulse modulation (however, it does contain FM). On the 512-1024 MHz/Doubler Band the auxiliary RF output is one-half the frequency of the indicated RF frequency.

TIME BASE Reference in/Out: input for external, 5 MHz time base reference that is >100 mVrms; load impedance is 1 k Ω . Output for internal, 5 MHz time base reference, level is 3 Vrms into an open circuit; source impedance is 500 ohms.

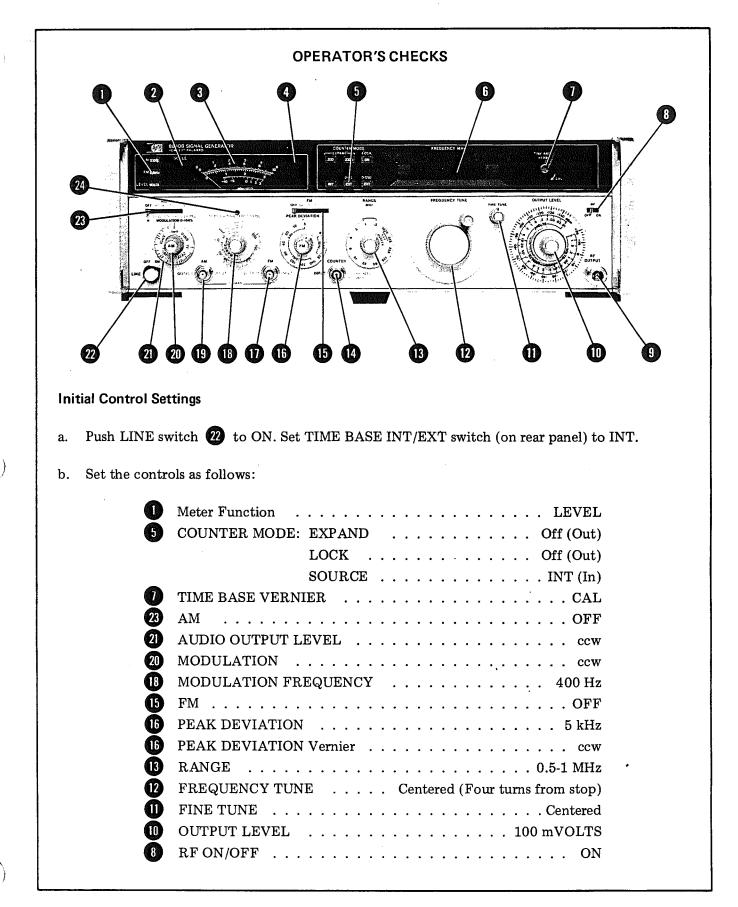
TIME BASE Reference INT/EXT: switch selects function of IN/OUT jack. INT position applies internal reference to jack. EXT position feeds external reference from jack to time base.

NOTE

Since the phase lock reference is the 5 MHz time base, the Model 8640B can be phase locked to an external reference (such as another Model 8640B) by using the TIME BASE Reference jack and switch.

Line Power Module: permits operation from 100, 120, 220 or 240 Vac. The number visible in window indicates nominal line voltage to which instrument must be connected (see Figure 2-1). Center conductor is safety earth ground.

WARNING


Any interruption of the protective (grounding) conductor inside or outside the instrument or disconnection of the protective earth terminal is likely to make the instrument dangerous. Intentional interruption is prohibited. (See Section II).

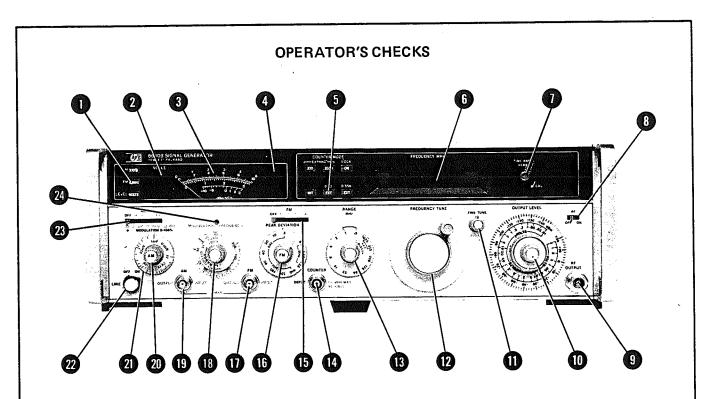

Serial Number Plate: first four digits of serial number comprise the prefix; last five digits form sequential suffix that is unique to each instrument. The plate also indicates any options supplied with instruments.

Figure 3-3. Rear Panel Controls and Connectors

2

3

Counter and RF Oscillator

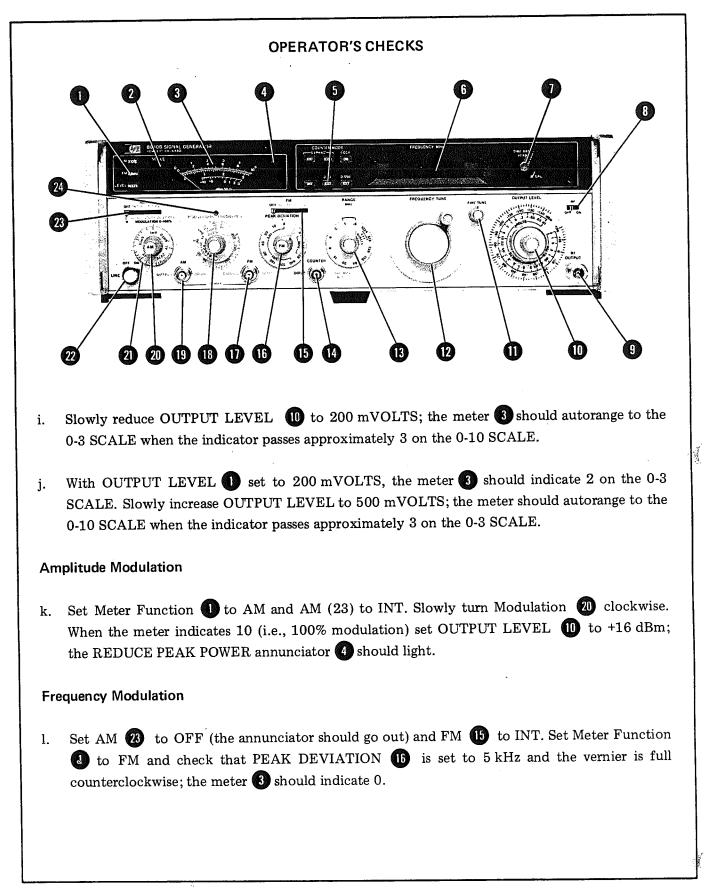
- c. Use a Type N to BNC adapter and a BNC to BNC cable to connect RF OUTPUT (9) to COUNTER INPUT (14).
- d. Adjust FREQUENCY TUNE 12 and FINE TUNE 11 until FREQUENCY 6 reads 0.75000 MHz. Set COUNTER MODE EXPAND 5 to X10; FREQUENCY should read about 0.750000 MHz (the reading should shift one place to the left). Set COUNTER MODE EXPAND to X100; FREQUENCY should read about 500000 MHz (the reading should shift one additional place to the left with the decimal point and the seven no longer displayed; the OVERFLOW annunciator lamp should be lit).
- e. Set COUNTER MODE EXPAND (5) to OFF (buttons out). With RANGE (13) set as follows, FREQUENCY (6) should read approximately as shown:

FREQUENCY MHz
0.75000
01.5000
03.0000
06.0000
12.0000
024.000
048.000
096.000
0192.00
0384.00
0768.00

Phase Lock

f. Set RANGE (1) to 256-512 MHz. Note that the right-hand digit on the FREQUENCY display (1) flickers between two digits. Set COUNTER MODE LOCK (1) to ON; the flickering should stop. Slowly adjust FINE TUNE; the FREQUENCY reading should not change. Adjust FREQUENCY TUNE (12); the FREQUENCY display should flash at about a 2 Hz rate and the reading should change (the reading should follow FREQUENCY TUNE).

RF Output


g. Set COUNTER MODE LOCK (5) to OFF and Source (5) to EXT 0-550. Adjust FREQUENCY TUNE (12) until FREQUENCY (6) reads 0384.00 MHz. Step through the ranges as specified in step e, setting the COUNTER MODE EXPAND and Source (EXT) controls (5) to obtain appropriate resolution; FREQUENCY should read approximately as shown in step e.

NOTE

With RANGE set to 512-1024 MHz, FREQUENCY will read approximately 0384.00 MHz (the actual frequency at RF OUTPUT).

Meter

h. Set OUTPUT LEVEL 10 to 500 mVOLTS; the meter 3 should indicate 5 on the 0-10 SCALE (the 0-10 SCALE annunciator 2 should be lit).

OPERATOR'S CHECKS

- m. Turn the PEAK DEVIATION vernier 16 full clockwise; the meter 3 should indicate approximately 5 and the REDUCE FM VERNIER annunciator 3 should light.
- n. Reduce FM vernier 16 until meter reads 5 kHz (the annunciator should go out). Check that RANGE 13 is set to 0.5-1 MHz, and set PEAK DEVIATION 16 to 10 kHz; the REDUCE PEAK DEVIATION annunciator 4 should light and the meter should indicate 0.
- o. Set RANGE (13 to 1-2 MHz (the annunciator should go out) and turn the PEAK DEVIATION vernier (16 full counterclockwise; the meter (3) should indicate 0 on the 0-10 SCALE.

Modulation Oscillator

p. Using the BNC to BNC cable, connect FM OUTPUT **1** to COUNTER INPUT **4**. Set COUNTER MODE EXPAND **5** to X100 and Source **5** to EXT 0-10. Set AUDIO OUTPUT LEVEL **21** to 1 V and MODULATION FREQUENCY **1**⁸, in turn, to 400 Hz and 1 kHz; the FREQUENCY readout **6** should display approximately "0.000400" and "0.001000" MHz.

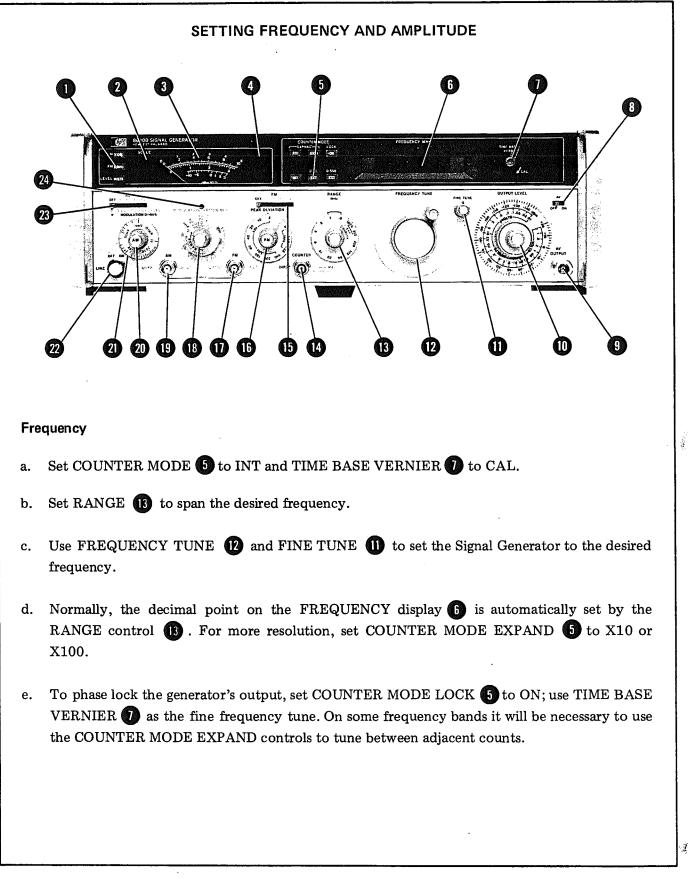


Figure 3-5. Setting the Frequency and Amplitude Controls (1 of 3)

SETTING FREQUENCY AND AMPLITUDE

NOTE

If the OVERFLOW annunciator lamp is lit, the generator will not enter phase lock. If the TIME BASE VERN is not in the CAL position, the counter will not be calibrated.

f. Whenever phase lock is lost, the FREQUENCY display (6) will flash. To re-establish phase lock, set COUNTER MODE LOCK (5) to OFF; re-tune (if necessary) with FREQUENCY TUNE (12) and FINE TUNE (11), and set COUNTER MODE LOCK to ON.

NOTE

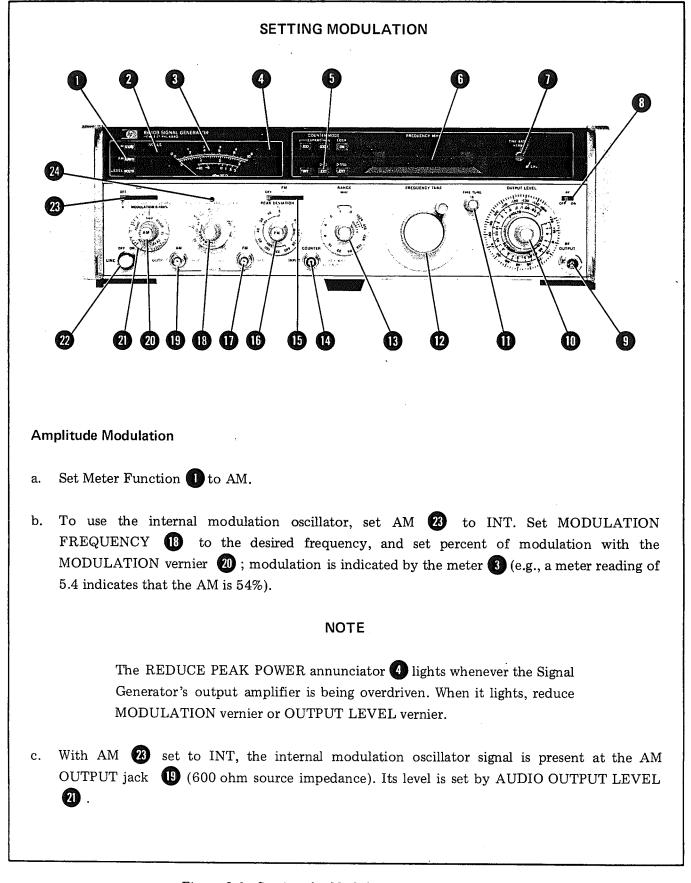
To get an accurate indication of frequency when not phase locked, set TIME BASE VERNIER **1** to CAL.

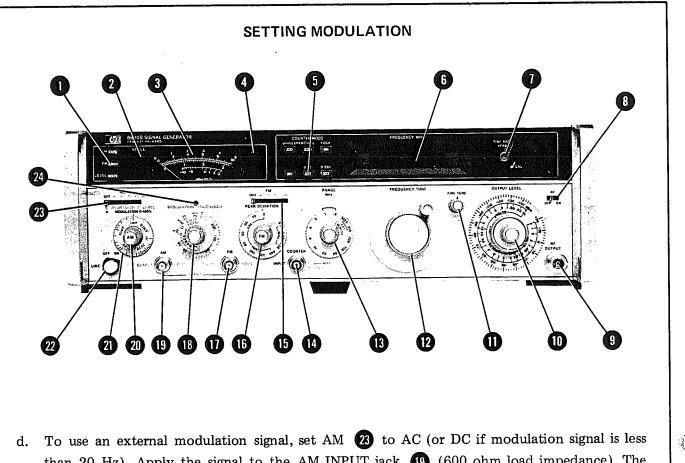
g. To use an external frequency doubler, connect to RF OUTPUT (9) and set RANGE (13) to 512-1024 MHz/DOUBLER. The FREQUENCY display (5) will indicate the frequency out of doubler (i.e., the FREQUENCY display indicates twice the frequency at RF Output).

Amplitude

a. Use the OUTPUT LEVEL switch and vernier 10 to set the desired signal level (there are two scales, rms volts and dBm). For optimum operation, use the vernier in the top 10 dB of its range. To enable the RF signal, set the RF ON/OFF switch 10 to ON.

NOTE


The RF ON/OFF switch disables the RF signal by turning off the RF oscillator and also by disabling the RF path in the output circuits. If desired, the switching can be connected so that the RF ON/OFF switch turns off only the output circuits (see Service Sheet 5 in Section VIII).


Operation

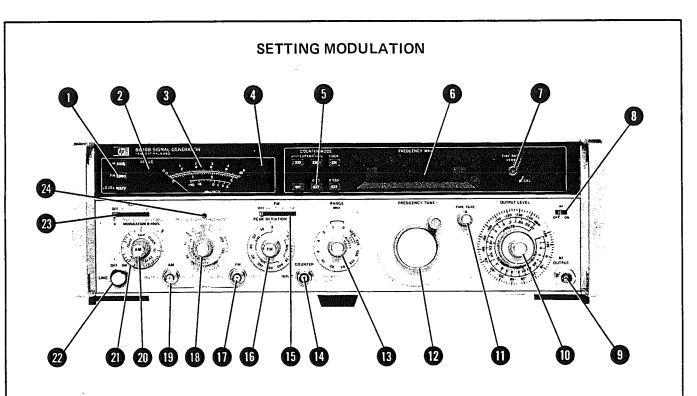
SETTING FREQUENCY AND AMPLITUDE

- b. For better voltage and dBm resolution, set Meter Function 1 to LEVEL. The meter 3 is read in conjunction with the OUTPUT LEVEL controls 10 (e.g., with OUTPUT LEVEL set to approximately 20 mVOLTS, a meter reading of 2.1 indicates that the actual level is 21 mVrms).
- c. If a 50 ohm to 75 ohm adapter (consisting of a 25 ohm series resistor) is connected to RF OUTPUT (9), the OUTPUT LEVEL (10) voltage scale will be correct if the instrument is used with 75 ohm terminations. However, 1.76 dB must be subtracted from the dB scale for correct readings.

Figure 3-5. Setting the Frequency and Amplitude Controls (3 of 3)

than 20 Hz). Apply the signal to the AM INPUT jack (19) (600 ohm load impedance). The Signal Generator requires 1 Vpk (0.7071 Vrms) for 100% modulation. Set percent of modulation with the MODULATION vernier (20); modulation % is indicated by the meter (3).

NOTE


The meter reading is accurate when AM is set to DC only if no dc offset is applied to the AM INPUT jack. The meter responds to the positive peak of the ac component of the modulating signal.

Pulse Modulation

- a. Set Meter Function 1 to LEVEL.
- b. Set AM ²³ to PULSE (this disables the RF output). Apply the modulation pulse to the AM INPUT jack ¹⁹ (50 ohm load impedance). The signal Generator requires a positive level to produce an RF output.
- c. Set the desired pulse-on level using the OUTPUT LEVEL controls (10).

SETTING MODULATION **Frequency Modulation** Set Meter Function (1) to FM. a. To use the internal modulation oscillator, set FM (15) to INT. Set MODULATION b. FREQUENCY (B) to the desired frequency, and set the peak deviation with the PEAK DEVIATION switch and vernier **(16)**. NOTE The REDUCE PEAK DEVIATION annunciator 4 lights whenever the PEAK DEVIATION switch setting is too high for the selected frequency range. When it lights, reduce PEAK DEVIATION. c. Peak frequency deviation is indicated by the meter (3), and the meter is read in conjunction with the PEAK DEVIATION switch (6.g., with PEAK DEVIATION set to 320 kHz, a meter reading of 2.8 indicates that peak frequency deviation is 280 kHz). d. With FM 15 set to INT, the internal modulation oscillator signal is present at the FM OUTPUT jack 10 (600 ohm source impedance). Its level is set by AUDIO OUTPUT LEVEL **2**]. To use an external modulation signal, set FM (15) to AC (or DC if modulation signal is less e. than 20 Hz). Apply the signal to the FM INPUT jack 🕕 (600 ohm load impedance). The Signal Generator requires 1 Vpk (0.7071 Vrms) for full peak deviation. The PEAK DEVIA-TION controls (6) and the meter (3) are used the same as when using the internal modulation oscillator signal. To calibrate the external input, set the FM switch (15) to DC (with no signal applied to FM f. input) and read the frequency of the RF Output. Set FM to CAL and, using the PEAK DEVIATION switch and vernier (16), offset the frequency at RF OUTPUT an amount equal to the desired peak deviation. Set FM to DC or AC; a 1 Vpk (0.7071 Vrms) signal applied to FM INPUT will now produce the desired peak deviation. (Do not use FM CAL when phase locked.)

a.

NOTES

1. The REDUCE FM VERNIER annunciator **(1)** lights whenever an FM input causes peak deviation to exceed its limits. When it lights, reduce either the PEAK DEVIATION vernier or the external signal level.

2. Do not apply FM signals that are less than 50 Hz when using the generator in the phase lock mode. Doing so will cause either the FM deviation to be uncalibrated or the generator to break phase lock (thereby causing the counter display to flash). Also do not use FM CAL after locking.

Simultaneous AM and FM

a. Simultaneous AM and FM, or pulse modulation and FM, can be accomplished using the procedures described above. The internal modulation oscillator can be used for either one or both, AM and FM.

NOTE

On Signal Generators with the Option 001 Variable Modulation Oscillator, don't load both AM OUTPUT (19) and FM OUTPUT (1) when the oscillator is providing both modulating signals. The outputs are in parallel and the parallel load should be greater than 600 ohms.

Figure 3-6. Setting the Modulation Controls (4 of 4)

SECTION IV PERFORMANCE TESTS

4-1. INTRODUCTION

4-2. The procedures in this section test the instrument's electrical performance using the specifications of Table 1-1 as the performance standards. A simpler operational test is included in Section III under Operator's Checks.

4-3. EQUIPMENT REQUIRED

4-4. Equipment required for the performance tests is listed in the Recommended Test Equipment table in Section I. Any equipment that satisfies the critical specifications given in the table may be substituted for the recommended model(s).

4-5. TEST RECORD

4-6. Results of the performance tests may be tabulated on the Test Record at the end of the procedures. The Test Record lists all of the tested specifications and their acceptable limits. Test results recorded at incoming inspection can be used for comparison in periodic maintenance and troubleshooting and after repairs or adjustments.

4-7. TEST PROCEDURES

4-8. It is assumed that the person performing the following tests understands how to operate the specified test equipment. Equipment settings,

other than those for the Model 8640B, are stated in general terms. For example, a test might require that a spectrum analyzer's resolution bandwidth be set to 100 Hz; however, the time per division setting would not be specified and the operator would set that control so that the analyzer operates correctly.

4-9. It is also assumed that the person performing the tests will supply whatever cables, connectors, and adapters are necessary. The Test Accessories table in Section I lists the requirements for some of these items.

4-10. Unless otherwise specified, set the following controls as shown:

TIME BASE INT/EXT (on rear panel)INTTIME BASE VERNIERCAL

Use FINE TUNE in conjunction with FRE-QUENCY TUNE to set whatever frequency is required. Use the COUNTER MODE EXPAND controls whenever necessary to obtain required counter resolution.

CAUTION

To avoid the possibility of damage to test equipment, read completely through each test before starting it. Make any preliminary control settings necessary for correct test equipment operation.

NOTE

Table 4-2 contains a list of recommended abridgments to the performance tests. The abridgments suggest rapid and relatively inexpensive ways to test the instrument while retaining those tests which are considered of prime importance in characterizing the generator. Where alteration of a test is recommended, a justification (remark) is also given. Should individual needs make the justification invalid, the test should be performed in its entirety. (E.g., the Incidental AM Test, sometimes known as AM on FM, has been omitted as being of secondary importance. Should your application require characterization of this specification, the test should be performed.)

đ.

4-11. FREQUENCY RANGE TEST

SPECIFICATION:

Range: 500 kHz to 512 MHz in 10 octave bands.

Bands and Band Overlap: Bands extend 10% below and 7% above the nominal limits shown below.

Nominal Frequency Bands (MHz)	0.5-1	1-2	2-4	4-8	8-16	16-32	32-64	64- 128	128- 256	256- 512	External Doubler Band 512-1024
Frequency	0.45	0.9	1.8	3.6	7.2	14.4	28.8	57.5	115	230	230 to 550
Range (MHz)	to	to	to	to	to	to	to	to	to	to	(without Ex-
(with overlap)	1.07	2.1	4.2	8.5	17.1	34.3	68.7	137.5	275	550	ternal Doubler)

DESCRIPTION:

The frequency range is verified by using a frequency counter to measure the frequency at the high and low end of each band.

EQUIPMENT:

PROCEDURE:

1. Connect generator's auxiliary RF output jack (located on rear panel) to frequency counter's 50 ohm input after setting Signal Generator's controls as follows:

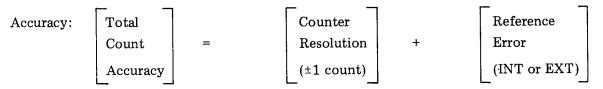
COUNTER MODE:	EXPAND		
	LOCK		 Off
	Source		 INT
AM			 OFF
FM			 OFF
RANGE			 256 - 512 MHz
FREQUENCY TUN	Е		 Full clockwise
FINE TUNE			 Centered
RF ON/OFF		· • • •	 ON

2. Set FREQUENCY TUNE full clockwise. The frequency counter should read 550 MHz or greater.

550.0 MHz_____

4-11. FREQUENCY RANGE TEST (Cont'd)

3. Set FREQUENCY TUNE full counterclockwise. The frequency counter should read 230 MHz or less.


_____ 230.0 MHz

4. Set RANGE as shown below and check frequency at high and low ends of each band.

Range (MHz)	Low End	High End
512-1024*	<230.0 MHz	>550.0 MHz
128-256	<115.0 MHz	>275.0 MHz
64-128	<57.50 MHz	>137.5 MHz
32-64	<28.80 MHz	>68.70 MHz
16-32	<14.40 MHz	>34.30 MHz
8-16	<7.200 MHz	>17.10 MHz
4-8	<3.600 MHz	>8.500 MHz
2-4	<1.800 MHz	>4.200 MHz
1-2	<0.900 MHz	>2.100 MHz
0.5-1	<0.450 MHz	>1.070 MHz

4-12. FREQUENCY ACCURACY AND FINE TUNE TEST

SPECIFICATION:

Internal Reference Error: $<\pm 2$ ppm (when calibrated at 25°C every 3 months and operated between 15°C and 35°C).

When phase locked, Counter Resolution error is eliminated.

Fine Tuning: Unlocked, >200 ppm total range. Locked mode, >±20 ppm by varying internal time base vernier.

4-12. FREQUENCY ACCURACY AND FINE TUNE TEST (Cont'd)

DESCRIPTION:

Frequency accuracy is checked (using the Signal Generator's internal reference) by comparing the generator's counter indication to the frequency reading on an external frequency counter. The fine tune range is also checked with the external counter.

EQUIPMENT:

PROCEDURE:

1. Connect generator's auxiliary RF output jack (located on rear panel) to frequency counter's input after setting Signal Generator's controls as follows:

COUNTER MODE:	EXPAND	1					•										. X100
	LOCK				•		•					•			•		Off
	Source						•	•••		•					•		INT
AM		••			•		•	•••				•		•	•		OFF
FM		• •		•	•							•	•		•		OFF
RANGE										-		-	-	-			
FREQUENCY TUN																	
RF ON/OFF		•••	• •	•	•	•••	•	•••	• •	•	•••	•	•	•	•	•••	ON

- 2. Allow Signal Generator and frequency counter to stabilize for two hours.
- 3. Set frequency counter time base to give at least one more digit resolution than the generator's counter. The difference in reading between the two counters should be <110 Hz (2 ppm + last digit uncertainty of 10 Hz).

_____110 Hz

4. Set COUNTER MODE EXPAND to X10 and LOCK to ON. Allow one minute to acquire phase lock. Increase the frequency counter resolution by 10. The difference in counter readings should be <100 Hz (2 ppm).

_____100 Hz

5. Note frequency counter reading. Turn TIME BASE VERN control ccw until it just leaves the detent position. The frequency counter should now read >1 kHz (>20 ppm) higher than the reading noted above.

1 kHz_____

6. Turn TIME BASE VERN fully ccw. The frequency counter should now read >1 kHz (>20 ppm) lower than the reading first noted in step 5.

1 kHz_____

4-12. FREQUENCY ACCURACY AND FINE TUNE TEST (Cont'd)

- 7. Set TIME BASE VERN to CAL (fully cw). Set COUNTER MODE LOCK to Off.
- 8. Set FINE TUNE fully cw. Note frequency counter reading, then set FINE TUNE fully ccw. The frequency counter should read >10 kHz (200 ppm) lower than the reading noted above.

10 kHz_____

4-13. FREQUENCY STABILITY VS TIME AND RESTABILIZATION TIME TEST

SPECIFICATION:

Stability vs Time (after 2 hour warmup): <10 ppm/10 min. (normal mode).

Restabilization Time (normal mode): After frequency change: <15 min. After band change: none. After 1 min. in RF OFF mode: <10 min.

NOTE

Stability specifications for phase lock mode are determined by counter time base reference. See the internal reference tests.

DESCRIPTION:

A frequency counter, digital to analog converter, and strip-chart recorder are used to measure the frequency drift after warm-up and the restabilization time.

NOTE

For these tests, ambient room temperature and line voltage must not change.

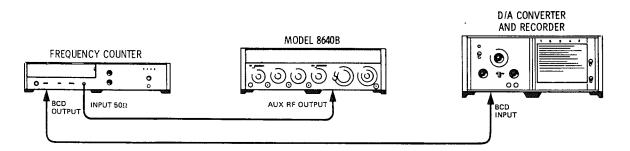


Figure 4-1. Frequency Stability vs Time and Restabilization Time Test Setup

4-13. FREQUENCY STABILITY VS TIME AND RESTABILIZATION TIME TEST (Cont'd)

EQUIPMENT:

Frequency Counter										•		•		•	HP 5327C OPT 003
Digital to Analog Converter .									•				•		HP 581A OPT 002
Recorder (for D/A Converter)	•	•	•	•	•	•	•	•		•	•	•	•	•	HP 680

PROCEDURE:

1. Connect equipment as shown in Figure 4-1 after setting Signal Generator's controls as follows:

COUNTER MODE:	EXPANI	C			•	•			•					•					Off
	LOCK	•		 •						•	•		•	•	•	•		• •	Off
	Source										•	•	•	•	•	•	• •		\mathbf{INT}
AM																			
FM																			
RANGE										•							32 -	64	MHz
FREQUENCY TUN	Е								•									50	MHz
RF ON/OFF				 •	•		• •	•	•	•	:	•	•	•	•	•			ON

- 2. Set frequency counter to read frequency directly (i.e., not divided down). Use a 1 s gate time so that the last three digits span from 000 to 999 Hz.
- 3. Calibrate the recorder for a zero to full-scale reading that corresponds to a 000 to 999 Hz reading of the frequency counter's last three digits (i.e., 1 kHz full scale).
- 4. Warm up the equipment for two hours. Establish a reference on the recorder and record the generator's output frequency for 10 minutes. The frequency change in 10 minutes should be <500 Hz (half of full scale).

_____ 500 Hz

5. Set the FREQUENCY TUNE control fully ccw and back again to approximately 50 MHz. After 15 minutes record the frequency for 10 minutes. The frequency change in 10 minutes should be <500 Hz.

_____ 500 Hz

6. Set RANGE to 16 - 32 MHz and record the frequency for 10 minutes. The frequency change in 10 minutes should be <250 Hz.

_____ 250 Hz

 Set RANGE to 32 - 64 MHz and set RF ON/OFF to OFF. After one minute set RF ON/OFF to ON. Wait 10 minutes and record the frequency for 10 minutes. The frequency change for the second 10 minutes should be <500 Hz.

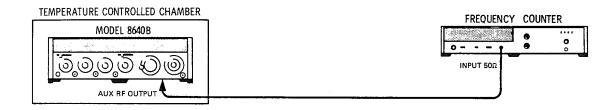
_____ 500 Hz

ł

PERFORMANCE TESTS

4-14. FREQUENCY STABILITY VS TEMPERATURE TEST

SPECIFICATION:


Stability vs Temperature: <50 ppm/°C (normal mode).

NOTE

Stability specifications for phase lock mode are determined by counter time base reference. See the internal reference tests.

DESCRIPTION:

A frequency counter is used to measure drift as temperature is changed. A temperature controlled chamber is used to vary the temperature.

Figure 4-2. Frequency stability vs Temperature Test Setup

EQUIPMENT:

Frequency Counter											HP 53	327C
Temperature Controlled Chamber							. S	ta	tha	ım	Model	325

PROCEDURE:

1. Connect equipment as shown in Figure 4-2 after setting Signal Generator's controls as follows:

COUNTER MODE:	EXPAND	 	 Off
	LOCK .	 	 Off
			 INT
			OFF
FM		 	 OFF
FREQUENCY TUN	Е	 	 50 MHz
RF ON/OFF	• • • • • • •	 • • •	 ON

2. Set temperature controlled chamber for 15°C. Allow Signal Generator to stabilize for two hours. Then note frequency counter reading.

4-14. FREQUENCY STABILITY VS TEMPERATURE TEST (Cont'd)

3. Set chamber for 35°C. Again, allow Signal Generator to stabilize for two hours. Frequency change from reading noted in step 2 should be less than 50 kHz.

_____50 kHz

4-15. FREQUENCY STABILITY VS LINE VOLTAGE TEST

SPECIFICATION:

Stability vs Line Voltage (+5% to -10% line voltage change): <1 ppm (normal mode).

NOTE

Stability specifications for phase lock mode are determined by counter time base reference. See the internal reference tests.

DESCRIPTION:

A frequency counter is used to measure frequency shift as line voltage is changed +5% to -10%.

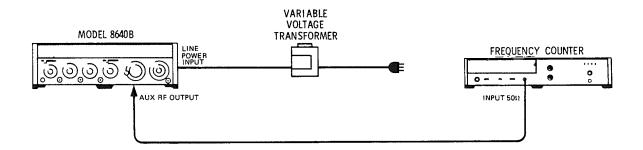


Figure 4-3. Frequency Stability vs Line Voltage Test Setup

EQUIPMENT:

Frequency Counter												HP 5327C
Variable Voltage Transformer	•		•			•	•	•	•	•	•	GR W5MT3A

4-15. FREQUENCY STABILITY VS LINE VOLTAGE TEST (Cont'd)

PROCEDURE:

1. Connect equipment as shown in Figure 4-3 after setting Signal Generator's controls as follows:

COUNTER MODE:	EXPANI	C							•										Off
	LOCK		 •		•	• •						•		•	•	•	• •		Off
	Source	•	 •	•					•	 •	•	•	•						INT
AM			 •	•	•		•	•	•		•	•	•	•	•	•		• •	OFF
FM			 •	•	•					 •	•	•	•	•	•	•	• •	• •	OFF
RANGE																			
FREQUENCY TUN	Έ	•	 •	•	•		•			 •	•		•	•	•	•	• •	50) MHz
RF ON/OFF		•	 •	•	•		•	•	•	 •	•	•	•		•	•	• •	• •	ON

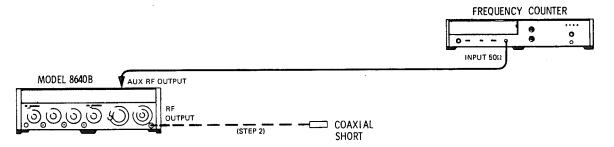
- 2. Set variable voltage transformer 5% above the nominal voltage set on generator's line power module (e.g., if nominal line voltage is 120 Vac, set transformer for 126 Vac). Note frequency counter reading.
- 3. Set variable voltage transformer 10% below nominal line voltage (e.g., for a nominal 120 Vac, set transformer for 108 Vac), then note counter's reading. The frequency change from the reading noted in step 2 should be <50 Hz (i.e., <1 ppm).

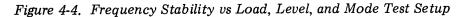
_____ 50 Hz

4-16. FREQUENCY STABILITY VS LOAD, LEVEL, AND MODE TEST

SPECIFICATION:

Stability vs Load (with any passive load change): <1 ppm (normal mode).
Stability vs Level Change (10 dB on OUTPUT LEVEL vernier): <1 ppm (normal mode).
Stability vs Modulation Mode Change (CW to FM): <1% of selected peak deviation or <200 Hz, whichever is greater.


NOTE


Stability specifications for phase lock mode are determined by counter time base reference. See the internal reference tests.

DESCRIPTION:

A frequency counter is used to measure frequency shift as the output is changed from an open circuit to a short circuit, as RF OUTPUT LEVEL is changed 10 dB, and as modulation mode is changed from CW to FM. The frequency is monitored at the rear panel auxiliary RF output jack.

4-16. FREQUENCY STABILITY VS LOAD, LEVEL, AND MODE TEST (Cont'd)

EQUIPMENT:

Frequency Counter											. HP 5327C
Type N Male Coaxial Short											

PROCEDURE:

1. Connect equipment as shown in Figure 4-4 after setting Signal Generator's controls as follows:

COUNTER MODE:		-	 	
	LOCK .	• •	 	 Off
	Source .		 	 INT
AM			 	 OFF
FM			 	 OFF
RANGE			 	 32 - 64 MHz
FREQUENCY TUN	Е		 	 50 MHz
OUTPUT LEVEL			 	 +19 dBm
RF ON/OFF			 	 ON

2. Note frequency counter reading. Then connect coaxial short to RF OUTPUT. Again, note frequency counter reading. It should have changed less than 50 Hz.

_____50 Hz ·

3. Remove coaxial short, note frequency counter reading, then set OUTPUT LEVEL vernier to +9 dBm. Again, note frequency counter reading. It should have changed less than 50 Hz.

_____50 Hz

4. Set RANGE to 256 - 512 MHz, and set FREQUENCY TUNE to 500 MHz. With FM switch set to OFF, note the frequency counter reading. Set PEAK DEVIATION switch to 10 kHz and PEAK DEVIATION vernier full clockwise. Set FM to AC and again, note frequency counter reading. It should have changed less than 200 Hz.

_____200 Hz

4-16. FREQUENCY STABILITY VS LOAD, LEVEL, AND MODE TEST (Cont'd)

5. Repeat step 4 with PEAK DEVIATION set as shown below. The frequency change should be as specified.

Peak Deviation	Frequency Change
20 kHz	<200 Hz
40 kHz	<400 Hz
80 kHz	<800 Hz
160 kHz	<1.6 kHz
320 kHz	<3.2 kHz
640 kHz	<6.4 kHz
1.28 MHz	<12.8 kHz
2.56 MHz	<25.6 kHz

4-17. HARMONICS TEST

SPECIFICATIONS:

Harmonics: (at 1 volt, +13 dBm output range and below) >35 dB below fundamental of 0.5 to 128 MHz,

>30 dB below fundamental of 128 to 512 MHz.

DESCRIPTION:

A spectrum analyzer is used to measure harmonics as the Signal Generator is tuned from 0.5 to 512 MHz.

EQUIPMENT:

PROCEDURE:

1. Connect generator's RF OUTPUT to analyzer's input after setting Signal Generator's controls as follows:

Meter Function .										•	•			\mathbf{L}	E١	VEL
COUNTER MODE:	EXPAND	•													•	Off
	LOCK	•		•		•		•					•	•	•	Off
	Source			•	•	•	•	•						•		INT

4-17. HARMONICS TEST (Cont'd)

AM
FMOFF
RANGE
FREQUENCY TUNE
OUTPUT LEVEL +13 dBm (switch 1 step
ccw from full cw)
RF ON/OFF

2. Set spectrum analyzer to measure harmonics 35 dB below the fundamental from 0.5 to 2 MHz. Set input attenuation to 50 dB, resolution bandwidth to 100 kHz, frequency span per division (scan width) to 1 MHz, scale to log (10 dB/div), and scale reference level to +13 dBm. Adjust analyzer's frequency controls to set 0 Hz to the left edge of the display.

NOTE

If 50 dB of analyzer input attenuation is not available, use an external attenuator such as the Model 355D.

3. Slowly tune Signal Generator to 1 MHz, checking that all harmonics are more than 35 dB below the fundamental.

35 dB_____

Ŷ

. .

NOTE

If any harmonic below 512 MHz appears to be out of specification, remove any possible analyzer error and remeasure the harmonic as follows:

a. Tune the generator to the frequency of the harmonic.

b. Using the analyzer's IF attenuator, step the signal down 30 dB on the display and note the -30 dB point on the display.

c. Step the IF attenuator up 30 dB and retune the generator to its original setting.

d. Using the -30 dB point noted on the display as a reference, remeasure the harmonic.

4. Set spectrum analyzer and Signal Generator as shown below. On each range, set FREQUENCY TUNE to the low end of the band and use analyzer's frequency controls to set the fundamental to the left edge of the display. Keeping the fundamental near the left edge of the display, tune FREQUENCY TUNE to the high end of the band. All harmonics should be as specified.

4-17. HARMONICS TEST (Cont'd)

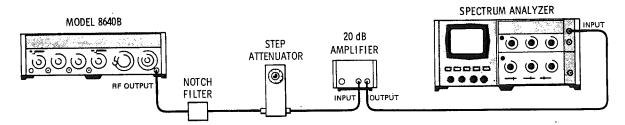
NOTE

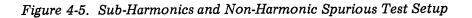
On bands 8 - 16 MHz and above, check for harmonics while tuning down in frequency. For frequencies above 500 MHz, tune analyzer to observe second harmonic.

Spectrun	n Analyzer	Signal Generator									
Resolution Bandwidth	Freq. Span Per Division	Range	Harmonics Down								
100 kHz	1 MHz	1-2 MHz	>35 dB `								
100 kHz	2 MHz	$2-4 \mathrm{~MHz}$	>35 dB								
100 kHz	5 MHz	4-8 MHz	>35 dB								
300 kHz	10 MHz	8-16 MHz	>35 dB								
300 kHz	$20 \mathrm{~MHz}$	16-32 MHz	>35 dB								
300 kHz	50 MHz	32-64 MHz	>35 dB								
300 kHz	100 MHz	64-128 MHz	>35 dB								
300 kHz	100 MHz	128-256 MHz	>30 dB								
300 kHz	100 MHz	$256-512 \mathrm{~MHz}$	>30 dB								

4-18. SUB-HARMONICS AND NON-HARMONIC SPURIOUS TEST

SPECIFICATION:


Sub-Harmonics and Non-Harmonic Spurious: (excluding frequencies within 15 kHz of carrier whose effects are specified under Residual AM and FM) >100 dB below carrier.


DESCRIPTION:

A notch filter is used to remove the fundamental. All non-harmonic spurious and sub-harmonics are then amplified and measured with a spectrum analyzer.

1

4-18. SUB-HARMONICS AND NON-HARMONIC SPURIOUS TEST (Cont'd)

EQUIPMENT:

520 MHz Notch Filter																		HI	? ()8(64	0-	60	50	2
10 dB Step Attenuator												•						•		•	F	-IP	3	551	D
20 dB Amplifier																									
Spectrum Analyzer		•	•	•	•	•	•	•	•	•	•	•	•	H	Ρ	1	41	.T	/8	55	21	B/8	85	54	В

PROCEDURE:

1. Connect equipment as shown in Figure 4-5 after setting Signal Generator's controls as follows:

Meter Function	ΞL
COUNTER MODE: EXPAND	
LOCK)ff
Source	1L
AM	$\mathbf{F}\mathbf{F}$
FM	FF
RANGE	
FREQUENCY TUNE	Hz
OUTPUT LEVEL	3m
RFON/OFF C)N

- 2. Set step attenuator to 60 dB. Set analyzer's input attenuation to 0 dB, scale switch to log (10 dB/div), and reference level controls to -30 dBm; set resolution bandwidth to 30 kHz, frequency span per division (scan width) to 1 MHz, and tune the frequency controls to set 260 MHz at the center of the display. Adjust reference level vernier to set signal peak to top (reference) graticule line on display.
- 3. Set generator's RANGE switch to 256 512 MHz. Tune analyzer to display the 520 MHz signal (i.e., the second harmonic of 260 MHz).
- 4. Tune generator's FREQUENCY TUNE for a minimum signal on analyzer's display. Set the step attenuator to 0 dB, and again tune FREQUENCY TUNE for a minimum signal.
- 5. The signal on the display should be below the top (reference level) graticule line. Tune the spectrum analyzer slowly to 500 kHz. All non-harmonic spurious signals, and sub-harmonics should be below the -50 dB graticule on the display (>100 dB down).

100 dB_____

4-19. SINGLE SIDEBAND PHASE NOISE TEST

SPECIFICATION:

SSB Phase Noise at 20 kHz Offset from carrier:

(Averaged rms noise level below carrier stated in a 1 Hz bandwidth.)

- 256 MHz to 512 MHz: > 130 dB from 230 to 450 MHz increasing linearly to > 122 dB down at 550 MHz.
- 0.5 MHz to 256 MHz: Decreases approximately 6 dB for each divided frequency range until it reaches SSB Broadband Noise Floor of > 140 dB.

DESCRIPTION:

Phase noise is measured with a spectrum analyzer. A reference signal generator and a mixer are used to down-convert the test Signal Generator's CW signal to 0 Hz (the two signal generators are phase locked together). Then the spectrum analyzer measures SSB phase noise at a 20 kHz offset from the carrier.

NOTE

This test measures the total SSB phase noise of both generators. Therefore, the reference signal generator must have SSB phase noise that is less than or equal to the specification for the test generator.

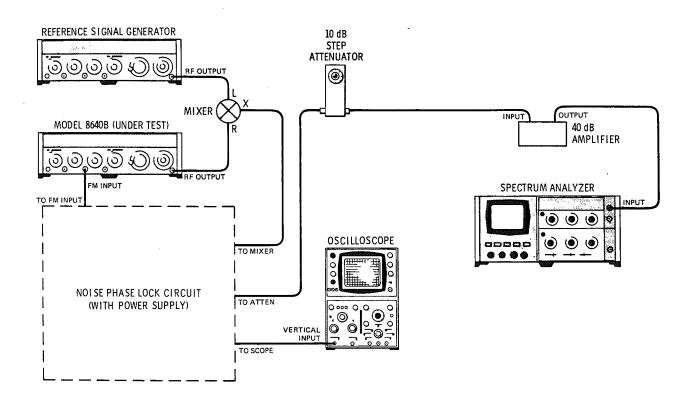


Figure 4-6. Single Sideband Phase Noise Test Setup

4-19. SINGLE SIDEBAND PHASE NOISE TEST (Cont'd)

EQUIPMENT:

Reference Signal Generator										•				 	HP 8640A
Mixer	•						•							 	. HP 10514A
10 dB Step Attenuator															
40 dB Amplifier	•	•	•	•	•	•	•		•	•	۰.	•	•	 . HP	08640-6050
Oscilloscope															
Spectrum Analyzer															
Noise Phase Lock Circuit .	•	•	•	•	•	•	•	•	•	•	•	•	•	 . HP	08640-60504

PROCEDURE:

1. Connect equipment as shown in Figure 4-6 after setting test Signal Generator's controls as follows:

Meter Function
COUNTER MODE: EXPAND Off
LOCK
Source
M
[°] M
EAK DEVIATION
EAK DEVIATION Vernier
ANGE
REQUENCY TUNE
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
RFON/OFF ON

- 2. Set analyzer's input level control to -40 dBm, resolution bandwidth to 1 kHz, dBm/dBV control to dBm 50 ohm, span width per division (scan width) to 5 kHz, and center frequency controls to 20 kHz. Set display reference level to -40 dBm (at 10 dB per division). Using analyzer's 20 kHz markers, measure and note 20 kHz on the display.
- 3. Set oscilloscope's volts/div control to 0.02 and time/div control to 50 μ s; set the input to measure dc. Set 10 dB step attenuator to 80 dB. Set 40 dB amplifier's input impedance switch to 50 ohms.
- 4. Set reference signal generator for a 549.98 MHz, CW signal at +13 dBm (i.e., 20 kHz below test generator's frequency). Fine adjust its frequency for a 20 kHz signal on analyzer's display. Adjust analyzer's display reference level controls so that the 20 kHz signal is 4.3 dB below the top (reference) graticule line.

NOTE

The correction factors for this measurement are as follows:

a. The DSB to SSB transfer is 6 dB because the mixing process translates two correlated 1 kHz BW portions of the noise into the 1 kHz BW of the analyzer — giving twice the effective noise voltage.

4-19. SINGLE SIDEBAND PHASE NOISE TEST (Cont'd)

NOTE (Cont'd)

- b. +2.5 dB because noise is average detected after logging*.
- c. -0.8 dB. Effective noise BW is 1.2 x 3 dB BW which gives -0.8 dB 10 log (actual 3 dB BW/nominal 3 dB BW)*.

Summing the correction factors gives $-4.3 \text{ dB } 10 \log (\text{actual } 3 \text{ dB } \text{BW/nominal} 3 \text{ dB } \text{BW})$ or approximately $-4.3 \text{ dB } \pm 1 \text{ dB}$.

- 5. Phase lock the generators by setting test generator's FM switch to DC and by tuning reference signal generator to 550 MHz (i.e., for a difference frequency of 0 Hz). Monitor phase lock on oscilloscope, checking that mixer's output is 0 Vdc (if it is not, fine tune reference generator until it is).
- 6. Set analyzer's display smoothing (video filter) to 10 Hz. Set step attenuator to 0 dB. The top (reference) graticule line on analyzer's display represents 110 dB/Hz below carrier level (the transfer from a 1 kHz BW to a 1 Hz BW is 30 dB). The average noise level on the display should be > 12 dB below top graticule line at 20 kHz (i.e., > 122 dB below carrier).

12 dB_____

NOTE

Set oscilloscope to check for possible line-related signals in test setup. They should be < 10 mVp-p.

 Set test Signal Generator to 450 MHz and FM switch to OFF. Set reference signal generator to 449.98 MHz (i.e., 20 kHz below the test generator's frequency). Repeat steps 2 through 6. The average noise level on the display should be > 20 dB below top graticule line at 20 kHz.

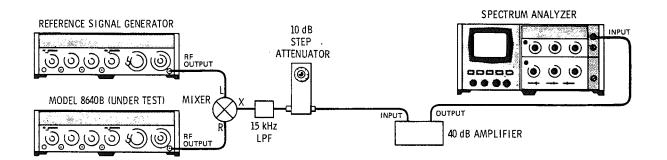
20 dB_____

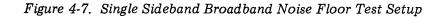
NOTE

SSB phase noise can be checked at any other frequency from 230 kHz to 550 MHz by following the procedures given above. Noise decreases approximately 6 dB per each octave band change down to -140 dB below carrier.

4-20. SINGLE SIDEBAND BROADBAND NOISE FLOOR TEST

SPECIFICATION:


SSB Broadband Noise Floor at maximum output vernier and greater than 500 kHz offset from carrier: (Averaged rms noise level below carrier stated in a 1 Hz bandwidth.) 0.5 to 512 MHz: >140 dB.


^{*} See Hewlett-Packard Application Note 150-4, Spectrum Analysis - Noise Measurements.

4-20. SINGLE SIDEBAND BROADBAND NOISE FLOOR (Cont'd)

DESCRIPTION:

A spectrum analyzer is used to measure the broadband noise floor (a reference signal generator and a mixer are used to down-convert the test Signal Generator's RF output and noise to within the range of the spectrum analyzer). A reference level is set on the analyzer with a 5 kHz signal, the signal is changed to 500 kHz and removed from the analyzer with a filter, and the broadband noise floor is measured.

EQUIPMENT:

Reference Signal Generator	 	• •	 HP 8640A
Mixer	 		 HP 10514A
15 kHz Low-Pass Filter	 	• •	 CIR-Q-TEL 7 Pole
10 dB Step Attenuator	 	• •	 HP 355D
40 dB Amplifier	 		 HP 08640-60506
Spectrum Analyzer	 	• •	 HP 141T/8552B/8556A

PROCEDURE:

1. Connect equipment as shown in Figure 4-7 after setting test Signal Generator's controls as follows:

Meter Function
COUNTER MODE: EXPAND Off
LOCK
Source
AM
FM
RANGE
FREQUENCY TUNE
OUTPUT LEVEL
RF ON/OFF

4-20. SINGLE SIDEBAND BROADBAND NOISE FLOOR (Cont'd)

- 2. Set 10 dB step attenuator to 80 dB. Set reference signal generator for a 500.005 MHz (i.e., 5 kHz above the test generator's frequency), CW signal at +13 dBm (output vernier maximum cw). Set 40 dB amplifier's input impedance switch to 50 ohms.
- 3. Set spectrum analyzer's resolution bandwidth to 1 kHz, set input level control to -40 dBm and dBm/dBV to dBm 50 ohm, and adjust frequency controls to set the 5 kHz difference frequency in the center of the display. Set analyzer's display reference level controls for 10 dB per division with the 5 kHz difference signal 1.3 dB from the top (reference) graticule line on the display.

NOTE

The correction factors for this measurement are as follows:

a. The DSB to SSB transfer is -3 dB because the mixing process translates two uncorrelated 1 kHz BW portions of the noise into the 1 kHz BW of the analyzer - giving $\sqrt{2}$ times the effective noise voltage.

b. +2.5 dB because noise is average detected after logging.*

c. -0.8 dB. Effective noise BW is $1.2 \ge 3$ dB BW which gives -0.8 dB - 10 log (actual 3 dB BW/nominal 3 dB BW).*

Summing the correction factors gives $-1.3 \text{ dB} - 10 \log (\text{actual } 3 \text{ dB} \text{ BW/nominal } 3 \text{ dB BW})$ or approximately $-1.3 \text{ dB} \pm 1 \text{ dB}$.

4. Change reference signal generator's output frequency to 500.50 MHz. Set 10 dB step attenuator to 0 dB. Set analyzer's display smoothing (video filter) to 10 Hz. The top graticule line on analyzer's display represents -110 dB (the transfer from a 1 kHz BW to a 1 Hz BW is 30 dB). The average noise level on the display should be >30 dB below the top graticule line (i.e., >140 dB below carrier).

30 dB_____

NOTE

If the test generator appears to be out of specification, check for excessive noise in the test setup by disconnecting the test generator. The noise level on the analyzer's display should decrease at least 10 dB.

* See Hewlett-Packard Application Note 150-4, Spectrum Analysis - Noise Measurements.

V

4-21. RESIDUAL AM TEST

SPECIFICATION:

Residual AM: (Averaged rms)

Post-detection N	Post-detection Noise Bandwidth											
300 Hz to 3 kHz	20 Hz to 15 kHz											
>85 dB down	>78 dB down											

DESCRIPTION:

An rms voltmeter is calibrated with a measured amount of amplitude modulation from the Signal Generator. Then the AM is removed and the generator's residual AM is read directly from the voltmeter.

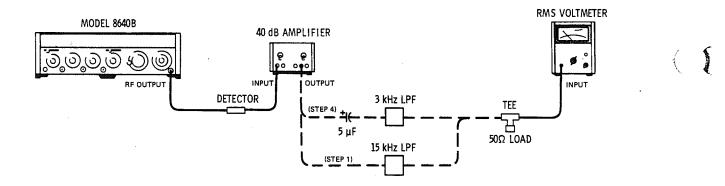


Figure 4-8. Residual AM Test Setup

EQUIPMENT:

PROCEDURE:

1. Connect equipment as shown in Figure 4-8 (with the generator connected to the rms voltmeter through the detector, amplifier, 15 kHz LPF, and across the 50 ohm load). Set Signal Generator's controls as follows:

4-21. RESIDUAL AM TEST (Cont'd)

Meter Function																		
LOCK .																		
Source .																		
AM																		
MODULATION	•		•		• •	•		•	•	•	•	•	•	 	•	\mathbf{F}	ull	ccw
MODULATION FREQUENCY																		
FM														 			. (OFF
RANGE														 25	3 -	51	.2	MHz
FREQUENCY TUNE														 	•	50	0	MHz
OUTPUT LEVEL																		
RF ON/OFF	•	•	•	•		•	•	•	•			•	•	 • •		•	•	ON

- 2. Set Meter Function to AM and slowly turn Signal Generator's MODULATION control clockwise until its panel meter indicates 10% AM. Note voltmeter reading in dB.
- 3. Set generator's AM switch to OFF. The residual AM should read >58 dB below the reference noted in step 2 (i.e., >78 dB down). (The 10% AM, after detection, is 20 dB below the carrier level. Residual AM is then 20 dB -78 dB = -58 dB.)

58 dB_____

4. Replace the 15 kHz LPF with the 3 kHz LPF. Add the capacitor between amplifier and filter and repeat steps 1 through 3. The residual AM should read >65 dB below the reference noted in step 2 (i.e., >85 dB down).

65 dB_____

4-22. RESIDUAL FM TEST

SPECIFICATION:

Residual FM: (Averaged rms)

	CW and up to allowable pe		Up to maxim peak de	
Post-detection Noise Bandwidth	300 Hz to 3 kHz	20 Hz to 15 kHz	300 Hz to 3 kHz	20 Hz to 15 kHz
230 to 550 MHz	<5 Hz	<15 Hz	<15 Hz	<30 Hz

4-22. RESIDUAL FM TEST (Cont'd)

DESCRIPTION:

An FM discriminator is used to measure FM deviation (a reference signal generator and a mixer are used to down-convert the test Signal Generator's RF output to within the range of the discriminator). The discriminator output is filtered and amplified and then measured with a voltmeter. The voltmeter reading, in mVrms, is proportional to the rms frequency deviation of the residual FM.

NOTE

This test measures the total residual FM of both generators. Therefore, the reference generator must have residual FM that is less than or equal to the specification for the test generator.

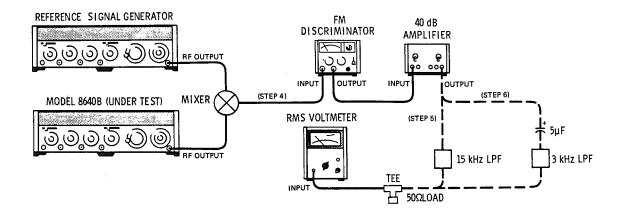


Figure 4-9. Residual FM Test Setup

EQUIPMENT:

FM Discriminator
Filter Kit
RMS Voltmeter
40 dB Amplifier
Capacitor 5 μ F
Reference Signal Generator
Mixer
3 kHz Low-Pass Filter (LPF)
15 kHz Low-Pass Filter (LPF)
50 Ohm Load HP 11593A

4-22. RESIDUAL FM TEST (Cont'd)

PROCEDURE:

1. Connect equipment as shown in Figure 4-9 after setting test Signal Generator's controls as follows:

Meter Function .																					•	•	Ι	'E.	VE	\mathbf{L}
COUNTER MODE:	EXPAND										•		•	•	•	•		•	•	•	•	•	•	•	0:	ff
	LOCK .																									
	Source .																									
AM		•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	• '	OF	F
FM		•	•	•	•	•	•	•	•	•	•	•	•.	•	•	•	•	•	•	•	•	•	•		. A	C
PEAK DEVIATION	Γ	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	.•	•	•	•	•	•	32	20	kF.	iz
PEAK DEVIATION																										
RANGE																										
FREQUENCY TUN																										
OUTPUT LEVEL																										
RF ON/OFF		•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	0	IN

- 2. Install shorting board in discriminator and calibrate it for 1 Vdc (at the output jack) for a full-scale meter reading. Remove shorting board, prepare a 20 kHz Butterworth low-pass filter (from the filter kit), and install the filter in the discriminator.
- 3. Set reference signal generator for a 500.10 MHz, CW signal at +13 dBm.
- 4. Connect discriminator to mixer. Set discriminator's range to 100 kHz and sensitivity to 0.01 Vrms. Fine tune either generator for a full-scale meter reading on the discriminator.
- 5. Connect amplifier to discriminator output. Connect the voltmeter through the 15 kHz LPF to amplifier's output. The signal out of the amplifier is 0.5 mVrms per 1 Hz (rms) of residual FM deviation, and the average voltmeter reading should be less than 7.5 mVrms (i.e., <15 Hz (rms) residual FM).

_____7.5 mVrms

NOTE

Test setup calibration can be checked by setting the test generator's FM to INT, PEAK DEVIATION to 5 kHz (vernier full cw), and MODULATION FRE-QUENCY to 1000 Hz. The voltmeter should read 1.77 Vrms.

6. Connect the capacitor between amplifier and filter. Replace 15 kHz LPF with 3 kHz LPF. The average voltmeter reading should be less than 2.5 mVrms (i.e., <5 Hz (rms) residual FM).

_____2.5 mVrms

7. Set test Signal Generator's PEAK DEVIATION switch to 2.56 MHz. The average voltmeter reading should be less than 7.5 mVrms (i.e., <15 Hz (rms) residual FM).

_____7.5 mVrms

4-22. RESIDUAL FM TEST (Cont'd)

8. Remove the capacitor and replace 3 kHz LPF with 15 kHz LPF. The average voltmeter reading should be less than 15 mVrms (i.e., <30 Hz (rms) residual FM).

_____15 mVrms

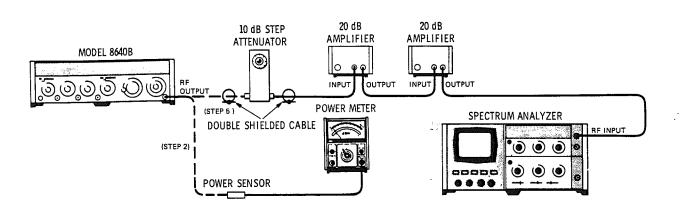
4-23. OUTPUT LEVEL ACCURACY TEST (Abbreviated)

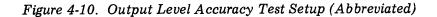
SPECIFICATION:

Range: 10 dB steps and 18 dB vernier provide output power settings from +19 to -145 dBm (2V to 0.013 μ V) into 50 Ω .

Level Accuracy:

	Using To	op 10 dB of Verni	er Range	Using Full Vernier Range
Output Level (dBm)	+19 to7	-7 to -47	-47 to -137	+19 to -145
Total Accuracy as Indicated on Level Meter	±1.5 dB	±2.0 dB	±2.5 dB	Add ±0.5 dB


DESCRIPTION:


The RF level accuracy for the upper four OUTPUT LEVEL attenuator ranges is measured with a power meter. For the lower ranges, a reference signal is established on a spectrum analyzer display, the Signal Generator's OUTPUT LEVEL switch and the spectrum analyzer's vertical scale log reference level control are stepped together, and any amplitude variations are measured on the analyzer's display. An RF attenuator and amplifier at the RF OUTPUT are adjusted for analyzer compatibility and best sensitivity.

This procedure uses an IF substitution technique in which the spectrum analyzer's IF is the standard. The IF step accuracy should be within ± 0.2 dB overall. The IF step accuracy can be checked using the above technique by comparing a lab calibrated attenuator (such as HP Model 355D Option H36) with the IF step control at the frequency of attenuator calibration (e.g., 3 MHz for the HP 355D Option H36).

NOTE

This procedure checks output level accuracy from +19 dBm to -127 dBm, all of the attenuator sections in the OUTPUT LEVEL step attenuator, and the OUTPUT LEVEL vernier. If, in addition, level accuracy must be verified down to -145 dBm, see paragraph 4-24.

EQUIPMENT:

Spectrum Analyzer
Power Meter
Power Sensor
20 dB Amplifier (2 required)
10 dB Step Attenuator HP 355D
Double Shielded Cable (2 required) HP 08708-6033

NOTE

An HP Model 432A Power Meter with a Model 478A Thermistor Mount can be used for this test. However, a 10 dB attenuator, such as the Model 8491A OPT 10, must be used with the mount. This will slightly degrade measurement accuracy.

PROCEDURE:

1. Connect equipment as shown in Figure 4-10 after setting Signal Generator's controls as follows:

Meter Function								•			•			•				LI	EVEL	(
COUNTER MODE:	EXPANI)						•											Off	
	LOCK							•						•					Off	,
	Source		•												•				INT	1
AM						•													OFF	I.
FM																	•		OFF	I.
RANGE			•							•	•				2	56	; - .	512	MHz	;
FREQUENCY TUN	Е																	512	MHz	
OUTPUT LEVEL					•													+19	dBm	L
RF ON/OFF		•	•	 •		•	•	•		•	•	•	•	•			•		ON	

- 2. Set power meter's controls so that it can measure +19 dBm. Connect power sensor to Signal Generator's RF OUTPUT.
- 3. Set Signal Generator's RF OUTPUT LEVEL controls for levels (set using generator's panel meter) shown in the table below; verify that the level is within the specified tolerance.

Signal G	Signal Generator					
OUTPUT LEVEL Switch	RF Level Set (with Panel Meter)	Power Meter Reading (dBm)				
Full cw	+19 dBm +13 dBm +5 dBm	$\begin{array}{c} +17.5 _ +20.5 \\ +11.5 _ +14.5 \\ +3.0 _ +7.0 \end{array}$				
1 step ccw from full cw	+13 dBm +8 dBm +3 dBm —5 dBm	$\begin{array}{c} +11.5 _ +14.5 \\ +6.5 _ +9.5 \\ +1.5 _ +4.5 \\ -7.0 \3.0 \end{array}$				
2 steps ccw from full cw	+3 dBm	+1.5 +4.5				
3 steps ccw from full cw	-7 dBm	-8.55.5				

- 4. Set step attenuator to 70 dB. Set spectrum analyzer center frequency to 512 MHz, resolution bandwidth to 1 kHz, frequency span per division (scan width) to 0.5 kHz, input attenuation to 0 dB, tuning stabilizer on, display smoothing (video filter) to 100 Hz, 2 dB per division vertical log display with a -20 dBm reference level.
- 5. Connect attenuator to generator's RF OUTPUT without disturbing generator's controls. Center signal on analyzer's display. Consider the center horizontal graticule line equivalent to -7 dBm (with a panel meter reading of +3 dB), then with the vertical scale reference vernier control set the signal peak to be equal to the last measured level on the power meter.

NOTE

If, for example, the last power meter reading was -7.4 dBm, the vertical scale resolution is 2 dB/division, therefore, the signal peak should be 0.4 dB or 0.2 division below the center (reference) graticule line.

6. Step Signal Generator's OUTPUT LEVEL switch and analyzer's vertical scale log reference level control as shown in the following table. Verify that the amplitude falls within ±2.0 dB (1 division) of the center (reference) graticule line in each case. If necessary, use generator's OUTPUT LEVEL vernier to reset panel meter to +3 dB.

Signal Ge	nerator	Spectrum Analyzer									
OUTPUT LEVEL Switch (from full cw)	RF Level Set (with Panel Meter)	Log Reference Level Control (dBm)	Display Amplitude (dB)								
3 steps ccw 4 steps ccw 5 steps ccw 6 steps ccw	7 dBm 17 dBm 27 dBm 37 dBm	$ \begin{array}{r} -20 \\ -30 \\ -40 \\ -50 \end{array} $	Set level 2.0 +2.0 2.0 +2.0 2.0 +2.0								

7. Set analyzer's vertical scale log reference level to -10 dBm and reset the 10 dB step attenuator to 30 dB. With the vertical scale log reference vernier, set the signal peak to the same level, with respect to the horizontal center (reference) graticule line, as the last measurement recorded on the preceeding table.

NOTE

If generator appears to be out of specification, check accuracy of spectrum analyzer's vertical scale calibration.

8. Step Signal Generator's OUTPUT LEVEL switch and analyzer's vertical scale log reference level control as shown in the following table. Verify that the amplitude is within the specified tolerance. If necessary, use generator's OUTPUT LEVEL vernier to reset panel meter to +3 dB.

Signal Ge	enerator	Spectrum Analyzer										
OUTPUT LEVEL Switch (from full cw)	RF Level Set (with Panel Meter)	Log Reference Level Control (dBm)	Display Amplitude (dB)									
6 steps ccw	—37 dBm	-10	Set level									
7 steps ccw	-47 dBm	-20	-2.5 +2.5									
8 steps ccw	-57 dBm	-30	-2.5 +2.5									
9 steps ccw	67 dBm	-40	-2.5 +2.5									
10 steps ccw	-77 dBm	50	-2.5 +2.5									

- 9. Set step attenuator to 0 dB; set spectrum analyzer's vertical scale log reference level to -20 dBm. Adjust vertical scale log reference vernier to give the same level, with respect to the center (reference) graticule line, as the last recorded entry on the previous table.
- 10. Set Signal Generator and analyzer controls as shown in the following table. The amplitude levels should be within the specified tolerances. If necessary, use generator's OUTPUT LEVEL vernier to reset panel meter to +3 dB.

Signal Ge	nerator	Spectrum Analyzer								
OUTPUT LEVEL Switch (from full cw)	RF Level Set (with Panel Meter)	Log Reference Level Control (dBm)	Display Amplitude (dB)							
10 steps ccw 11 steps ccw 12 steps ccw 13 steps ccw 14 steps ccw	77 dBm 87 dBm 97 dBm 107 dBm 117 dBm	$ \begin{array}{r}20 \\30 \\40 \\50 \\60 \\ \end{array} $	$\begin{array}{c c} & \text{Set level} \\ \hline -2.5 & -2.5 & +2.5 \\ \hline -2.5 & -2.5 & +2.5 \\ \hline -3.0 & -3.0 & +3.0 \\ \hline -3.0 & -3.0 & +3.0 \end{array}$							

11. Set analyzer's display to 10 dB/division log. Adjust log reference level vernier to set signal to -10 dB graticule line (one major division from top of display) plus last recorded entry on previous table.

NOTE

If the following step appears to be out of specification, check the accuracy of the analyzer's display with an external, calibrated attenuator.

12. Set generator's OUTPUT LEVEL switch one step ccw to -127 dBm (adjust vernier for +3 dB indication on panel meter). The amplitude level indicated on analyzer's display should be within 3 dB of the -20 dB graticule line (second major division from top of display).

-23______ -17 dB

-4

NOTE

The noise level on the analyzer's display should be >10 dB below the signal level. The signal should drop into the noise when the OUTPUT LEVEL vernier is turned fully ccw.

4-24, OUTPUT LEVEL ACCURACY TEST (Complete)

SPECIFICATION:

Range: 10 dB steps and 18 dB vernier provide output power settings from +19 to -145 dBm (2V to 0.013 μ V) into 50 Ω .

		Using Full Vernier Range						
Output Level (dBm)	+19 to7	+19 to -7 -7 to -47 -47 to -137						
Total Accuracy as Indicated on Level Meter	±1.5 dB	±2.0 dB	±2.5 dB	Add ±0.5 dB				

DESCRIPTION:

RF output level accuracy above -7 dBm is measured with a power meter; below -7 dBm, cumulative error is measured against a lab calibrated step attenuator using an IF substitution technique. The test Signal Generator's output is down-converted to 3 MHz (the IF) using a mixer and a reference signal generator. The 3 MHz IF is fed through the calibrated step attenuator to a spectrum analyzer. A reference level is established on the analyzer, and the step attenuator and the test generator's OUTPUT LEVEL switch are stepped together. Any amplitude variations are measured with a DVM connected to the analyzer's vertical output.

A spectrum analyzer tracking generator is connected, with the two signal generators, in a phase lock loop that prevents relative drift between the units.

NOTE

This procedure allows the output level accuracy to be verified down to -145 dBm. Care must be taken to ensure that leakage signals do not reduce the dynamic range of the test setup (use double-shielded coaxial cable, HP 08707-6033). Keep cables in the phase lock path away from cables in the measurement path.

EQUIPMENT:

Reference Signal Generator
20 dB Amplifier (3 required)
10 dB Step Attenuator
Calibrated Step Attenuator
Digital Voltmeter
Spectrum Analyzer
Tracking Generator
Mixer (3 required)
4 MHz Low Pass Filter (2 required)

ŧ

4-24. OUTPUT LEVEL ACCURACY TEST (Complete) (Cont'd)

NOTE

An HP Model 432A Power Meter with a Model 478A Thermistor Mount can be used for this test. However, a 10 dB attenuator, such as the Model 8491A OPT 10, must be used with the mount. This will slightly degrade measurement accuracy.

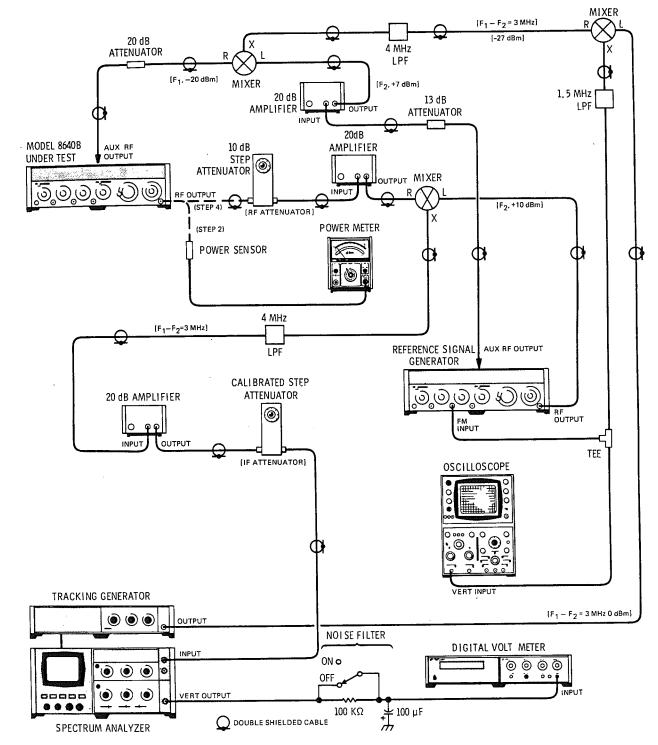


Figure 4-11. Output Level Accuracy Test Setup (Complete)

÷.

.

4-24. OUTPUT LEVEL ACCURACY TEST (Complete) (Cont'd)

PROCEDURE:

1. Connect power meter and power sensor to the test Signal Generator's RF OUTPUT jack. Set test generator's controls as follows:

Meter Function
COUNTER MODE: EXPAND Off
LOCK
Source
AMOFF
FM
RANGE
FREQUENCY TUNE
OUTPUT LEVEL
RF ON/OFF

- 2. Set power meter's controls so that it can measure +19 dBm. Connect power sensor to test Signal Generator's RF OUTPUT.
- 3. Set test Signal Generator's RF OUTPUT LEVEL controls for levels (set using generator's panel meter) shown in the table below; verify that the level is within the specified tolerance.

Signal G	Power Meter Reading							
OUTPUT LEVEL Switch	RF Level Set (with Panel Meter)	(dBm)						
Full cw	+19 dBm		+20.5					
	+13 dBm	+11.5						
	+5 dBm	+3.0	+7.0					
1 step ccw	+13 dBm	+11.5	+14.5					
from full cw	+8 dBm	+6.5	+9.5					
	+3 dBm	+1.5	+4.5					
	-5 dBm	-7.0	3.0					
2 steps ccw from full cw	+3 dBm	+1.5	+4.5					
3 steps ccw from full cw	-7 dBm	-8.5	5.5					

4-24. OUTPUT LEVEL ACCURACY TEST (Complete) (Cont'd)

- 4. Disconnect power meter and sensor from generator. Connect test generator's RF OUTPUT to the step attenuator as shown in Figure 4-11. Do not change any of the test generator's control settings (particularly the OUTPUT LEVEL vernier).
- 5. Set reference signal generator for 515 MHz signal (with no AM) at +10 dBm. Set its modulation controls for external FM (dc) and 640 kHz peak deviation (FM vernier at maximum).
- 6. Set the RF attenuator to 50 dB and the IF attenuator to 40 dB.
- 7. Connect spectrum analyzer to tracking generator. Set analyzer's center frequency controls to 3 MHz with the tuning stabilizer on; set resolution bandwidth to 10 Hz, span width per division (scan width) to 5 kHz, and input attenuation to 10 dB. Set the display controls for a linear display with 0.1 mV/div; set display smoothing (video filter) to 100 Hz and set the tracking generator for 0 dBm output.
- 8. Set oscilloscope for dc input coupling, vertical to 5 mV/div, and horizontal to 0.5 ms/div.
- 9. Set digital voltmeter's noise filter to maximum filtering, range to 10V, and function to dc.

NOTE

The noise filter between the analyzer and the DVM can be used instead of, or with, the DVM's noise filter whenever the DVM's reading is obscured by noise. To use this filter, switch it off (if it is on) for approximately two seconds to allow the capacitor to charge, then switch it on; wait approximately 30 seconds — to allow the filter to reach the average value of the signal — then take the reading.

10. Phase lock the system by tuning the reference signal generator's frequency to center the 3 MHz IF signal on analyzer's display. Set analyzer's span width per division to zero, then tune reference signal generator to indicate phase lock on the oscilloscope (the signal will peak, then become 0 Vdc when phase lock is reached).

NOTE

Care must be taken to ensure that all measurements are taken during phase lock. Also, the tracking generator's tracking adjustment should be periodically checked to ensure that the trace is peaked on the analyzer.

11. Adjust analyzer's display sensitivity controls for a -500 mVdc reading on the DVM. Measure the accuracy of test Signal Generator's output using IF substitution by switching the OUTPUT LEVEL switch in 10 dB steps while switching the IF attenuator (the calibrated 10 dB step attenuator). The DVM should read -500 mVdc ±0.5 dB. If necessary, use test generator's OUTPUT LEVEL vernier to reset panel meter to +3 dB.

ŧ

-- . (⁷

IF Attenuator	Test Generator	DVM Readings
(dB)	OUTPUT LEVEL	(mVdc)
40 30 20 10 0	7 dBm 17 dBm 27 dBm 37 dBm 47 dBm	$\begin{array}{r} -500 \text{ (set)} \\ -472.0 \underline{\qquad} -529.6 \\ -472.0 \underline{\qquad} -529.6 \\ -472.0 \underline{\qquad} -529.6 \\ -472.0 \underline{\qquad} -529.6 \end{array}$

4-24. OUTPUT LEVEL ACCURACY TEST (Complete) (Cont'd)

12. Set the RF attenuator to 0 dB and the IF attenuator to 50 dB. use analyzer's display sensitivity controls to set the DVM to the reading noted at the -47 dBm step, then continue. The DVM should read -500 mVdc ± 1 dB. If necessary, use test generator's OUTPUT LEVEL vernier to reset panel meter to +3 dB.

IF Attenuator	Test Generator	DVM Readings
(dB)	OUTPUT LEVEL	(mVdc)
50	47 dBm	Set level
40	57 dBm	

13. Set the IF attenuator to 30 dB, OUTPUT LEVEL to -67 dBm, and then adjust the OUTPUT LEVEL vernier so that the test Signal Generator's panel meter reads -67 dBm, then continue. The DVM should read -500 mVdc ± 1 dB.

IF Attenuator	Test Generator	DVM Readings
(dB)	OUTPUT LEVEL	(mVdc)
30 20 10	67 dBm 77 dBm 87 dBm	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

14. Set the IF attenuator to 0 dB, OUTPUT LEVEL to -97 dBm, and then adjust the OUTPUT LEVEL vernier so that the test generator's panel meter reads -97 dBm. The DVM should read -500 mVdc ± 1 dB.

4-24. OUTPUT LEVEL ACCURACY TEST (Complete) (Cont'd)

15. Set the IF attenuator to 30 dB and use analyzer's display sensitivity controls to set the DVM to the reading noted in step 14, then continue. The DVM should read -500 mVdc ± 1 dB. If necessary, use test generator's OUTPUT LEVEL vernier to reset panel meter to +3 dB.

IF Attenuator	Test Generator	DVM Readings
(dB)	OUTPUT LEVEL	(mVdc)
30	-97 dBm	Set level
20	-107 dBm	445.6561.0
10	-117 dBm	445.6561.0
0	-127 dBm	445.6561.0

16. Set the IF attenuator to 20 dB and use analyzer's display sensitivity controls to set the DVM to the reading noted at the -127 dBm step above, then continue. The DVM should read -500 mVdc ± 1 dB. If necessary, use test generator's OUTPUT LEVEL vernier to reset panel meter to +3 dB.

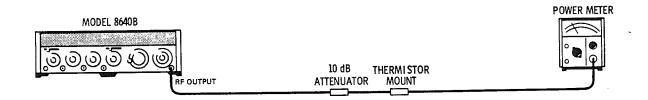
IF Attenuator	Test Generator	DVM Readings
(dB)	OUTPUT LEVEL	(mVdc)
20	—127 dBm	Set level
10	—137 dBm	

17. Set the IF attenuator to 0 dB and adjust the OUTPUT LEVEL vernier so that test Signal Generator's panel meter reads 0.013 μ V (-144.75 dBm). The DVM should read -650 mVdc ± 1.5 dB.

-546.9_____772.5 mVdc

- 18. Verify the test accuracy by increasing the RF attenuator by 10 dB. The DVM should drop below -300 mVdc. If it does not, check the test setup for RF leakage paths.
- 19. Check output level accuracy at other output frequencies by setting the two generators for a 3 MHz difference frequency and repeating steps 1 through 18.

Î


4-25. OUTPUT LEVEL FLATNESS TEST

SPECIFICATION;

Level Flatness: $<\pm 0.5$ dB flatness from 0.5 to 512 MHz referred to output at 50 MHz. (Flatness applies to ± 13 to ± 7 dBm and for top 10 dB of vernier range.)

DESCRIPTION:

A power meter is used to measure output level flatness across each band.

Figure 4-12. Output Level Flatness Test Setup

EQUIPMENT:

Power Meter																				HP 432A
Thermistor Mount																	•	•		HP 478A OPT H63
10 dB Attenuator	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	HP 8491A OPT 10

NOTE

The mount's VSWR should be 1.1:1 max. The attenuator's VSWR should be 1.06:1 max with flatness $\pm 0.05 \text{ dB}$ from 0.5 to 512 MHz.

PROCEDURE:

1. Connect equipment as shown in Figure 4-12 after setting Signal Generator's controls as follows:

Meter Function	I
COUNTER MODE: EXPAND	?
LOCK	2
Source	
AM	
FMOFF	•
RANGE	5
FREQUENCY TUNE	
OUTPUT LEVEL)
	J
RFON/OFF	•

4-25. OUTPUT LEVEL FLATNESS TEST (Cont'd)

- 2. Adjust OUTPUT LEVEL vernier for a power meter reading of +3 dBm at 50 MHz. Using RANGE and FREQUENCY TUNE controls, slowly tune Signal Generator from 512 MHz to 0.5 MHz. On each range, note maximum and minimum power meter readings in dBm.
- 3. The overall maximum reading and the overall minimum reading should both be within 0.5 dB of the reading at 50 MHz.

_____ 0.5 dB

4-26. OUTPUT IMPEDANCE TEST (In Band)

SPECIFICATION:

Impedance: 50 Ω ac coupled, 40 Vdc maximum, VSWR <2.0 on 2V and 1V output ranges; <1.3 on all other ranges.

DESCRIPTION:

The generator's output signal is reflected back into the RF OUTPUT jack by a coaxial short at the end of an adjustable stub (a variable length of air-line). This reflected signal is re-reflected by any mismatch at the jack. The re-reflected signal combines with the output signal according to the relative phase and magnitude of the two signals. The combined signal is monitored by a directional coupler and then measured by a voltmeter. Maximum and minimum power levels are noted as the electrical length of the stub is varied (i.e., the distance from the RF OUTPUT jack to the coaxial short is varied). VSWR is then calculated from the formula

$$VSWR = \frac{V_{max}}{V_{min}}$$

.

4-26. OUTPUT IMPEDANCE TEST (In Band) (Cont'd)

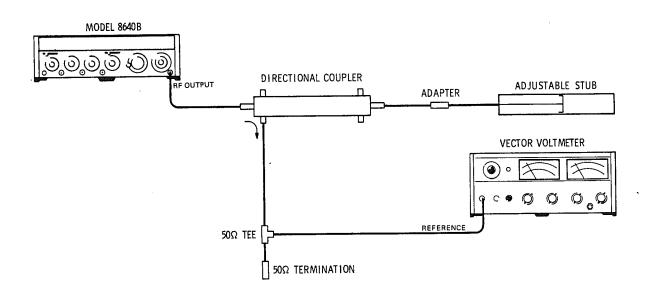


Figure 4-13. Output Impedance Test Setup (In Band)

EQUIPMENT:

Directional Coupler .			 HP 778D OPT 12
Adapter (Male Type N t	o GR 874))	 HP 1250-0847
Adjustable Stub			 General Radio 874-D50L
Vector Voltmeter			 HP 8405A
50 Ω Tee			 HP 11536A
50 Ω Termination			 HP 908A

PROCEDURE:

1. Connect equipment as shown in Figure 4-13 after setting Signal Generator's controls as follows:

Meter Function
COUNTER MODE: EXPAND Off
LOCK
Source
AMOFF
FM
RANGE
FREQUENCY TUNE
OUTPUT LEVEL
from full cw)
RF ON/OFF ON

4-26. OUTPUT IMPEDANCE TEST (In Band) (Cont'd)

- 2. Set voltmeter so that it can measure 100 mV. Adjust the stub for a minimum indication on power meter. Adjust generator's OUTPUT LEVEL vernier for a 50 mV indication on voltmeter (V_{min}).
- 3. Adjust the stub for a maximum indication on voltmeter. The voltmeter should indicate <100 mV (V_{max}) .

_____100 mV

- 4. Set generator's OUTPUT LEVEL switch one step ccw to 0 dBm. Set voltmeter so that it can measure 30 mV. Adjust the stub for a minimum indication on voltmeter. Adjust generator's OUTPUT LEVEL vernier for a 10 mV indication on voltmeter (V_{min}).
- 5. Adjust the stub for a maximum indication on voltmeter. The voltmeter should indicate <13 mV (V_{max}) .

_____ 13 mV

- 6. Set generator's OUTPUT LEVEL switch one step ccw to -10 dBm. Set voltmeter so that it can measure 10 mV. Adjust the stub for a minimum indication on voltmeter. Adjust generator's OUTPUT LEVEL vernier for a 5 mV indication on voltmeter (V_{min}).
- 7. Adjust the stub for a maximum indication on voltmeter. The voltmeter should indicate <6.5 mV (V_{max}) .

_____6.5 mV

8. If desired, repeat at other frequencies between 256 and 512 MHz.

NOTE

The steps given above effectively check VSWR at all settings of the output attenuator (see Service Sheet 13).

4-27. OUTPUT IMPEDANCE TEST (Out of Band)

SPECIFICATION:

Impedance: 50 Ω , ac coupled, 40 Vdc maximum, VSWR <2.0 on 2V and 1V output ranges; <1.3 on all other ranges.

DESCRIPTION:

A tracking generator is used as an external 50Ω signal source to feed a VSWR bridge. The output port of the bridge is connected to a spectrum analyzer. The through port of the bridge is connected to a short circuit to establish a reference, then to the generator output. Return loss versus frequency is displayed on the spectrum analyzer.

4-27. OUTPUT IMPEDANCE TEST (Out of Band) (Cont'd)

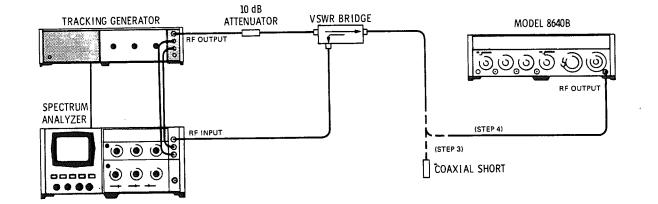


Figure 4-14. Output Impedance Test Setup (Out of Band)

EQUIPMENT:

Tracking Generator																			HP 8444A
Spectrum Analyzer					•							•						HI	2 8554B/8552B/141T
VSWR Bridge				•															Wiltron 60N50
Coaxial Short	•						•									•	•	•	HP 11512A
10 dB Attenuator	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	. HP 8491A OPT 10

PROCEDURE:

1. Connect equipment as shown in Figure 4-14 after setting Signal Generator's controls as follows:

AM										•											•	•	•				•	•	•			•	•		•	. 0)F]	F
$\mathbf{F}\mathbf{M}$					•		•															•		•				•						•		. (DF]	F
RANG	GE)											•														•	•	•	•		25	66	-	51	2 N	ИH	z
FREG																																						
OUTH	PU	Т	LJ	E١	7E	\mathbf{L}				•		•					•	•	•		•					•			•	•					+1	.9 ć	lBr	n
RF O	N/	0	FI	7	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•		•	•	•	•	•	•	•	•	•	•	•	. (OF:	F

- 2. Set spectrum analyzer for a frequency span of 50 550 MHz, 300 kHz resolution bandwidth, and 20 dB input attenuation. Set tracking generator output level to 0 dBm.
- 3. To establish a reference level, connect coaxial short to bridge output port. Use the spectrum analyzer's vertical scale, logrithmic level controls to set the reference level trace to the top of the analyzer display.
- 4. Remove coaxial short and couple bridge output port to Signal Generator's RF OUTPUT connector. The difference, in dB, from the reference level established in step 3 to the level now visible on the display is the return loss of the generator's output port. The return loss should be >9.8 dB from 50 to 512 MHz (VSWR <2.0:1).

9.8 dB_____

١

PERFORMANCE TESTS

4-27. OUTPUT IMPEDANCE TEST (Out of Band) (Cont'd)

5. Set generator's FREQUENCY TUNE control fully ccw and repeat steps 3 and 4. Return loss should be >9.8 dB from 50 to 512 MHz.

9.8 dB_____

6. Set generator's OUTPUT LEVEL switch two steps ccw to -1 dBm and repeat steps 3 and 4. Return loss should be >18.3 dB from 50 to 512 MHz (VSWR <1.3:1).

18.3 dB_____

7. Set generator's FREQUENCY TUNE control fully cw and repeat steps 3 and 4. Return loss should be >18.3 dB from 50 to 512 MHz.

18.3 dB_____

4-28. AUXILIARY OUTPUT TEST

SPECIFICATION:

Auxiliary Output: Rear panel BNC output is >-5 dBm into 50Ω , source impedance is approximately 500Ω .

DESCRIPTION:

The power level from the generator's rear panel Auxiliary RF Output jack is measured with a power meter as the Signal Generator is tuned from 512 MHz to 500 kHz.

EQUIPMENT:

Power Meter																										
Thermistor Mount	•	•	•	•	÷	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	H	24	478A	OP	'T H6	53

PROCEDURE:

1. Connect power meter's thermistor mount to generator's rear panel Auxiliary Output jack after setting Signal Generator's controls as follows:

COUNTER MODE:	EXPAND	 	 	Off
	LOCK	 	 	Off
	Source	 	 	INT
AM		 	 	OFF
FM		 • • •	 	OFF
RANGE		 • • •	 	256 - 512 MHz
FREQUENCY TUN	Έ	 • • •	 	512 MHz
RF ON/OFF		 	 · · · · · · · · ·	ON

4-28. AUXILIARY OUTPUT TEST (Cont'd)

2. Use generator's FREQUENCY TUNE and RANGE controls to tune from 512 to 0.5 MHz. The power meter should read >--5 dBm at all frequencies.

—5 dBm _____

4-29. OUTPUT LEAKAGE TEST

SPECIFICATION:

Leakage: (With all unused outputs terminated properly). Leakage limits are below those specified in MIL-I-6181D. Furthermore, less than 3 μ V is induced in a 2-turn, 1-inch diameter loop 1 inch away from any surface and measured into a 50 Ω receiver.

DESCRIPTION:

A loop antenna is held one inch from all surfaces of the Signal Generator and any leakage monitored with a spectrum analyzer. The loop antenna is suspended in a molding so that when the molding is in contact with a surface, the loop antenna is one inch from the surface.

NOTE

The use of a screen room may be necessary to reduce external radiated interference.

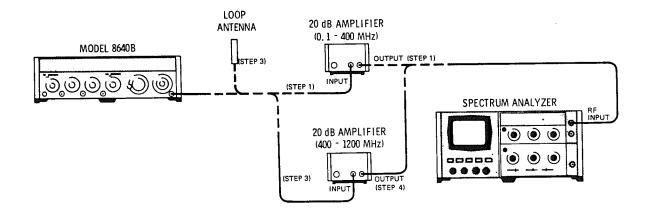


Figure 4-15. Output Leakage Test Setup

NOTE

To avoid disturbing antenna's field and causing measurement error, grasp antenna at the end that has the BNC connector.

1

4-29, OUTPUT LEAKAGE TEST (Cont'd)

EQUIPMENT:

One-Inch Loop Antenna									•				HP 08640-60501
20 dB Amplifier (0.5 - 400 MHz)													HP 8447A
20 dB Amplifier (400 - 1200 MHz)	•												HP 8447B
Spectrum Analyzer		•	•	•	•	•	•	•	•	Ī		HP 14	1T/8552B/8554B
50 Ohm Load (6 required)	•	•	•	•	•	•	•	•	•	•	•		HP 11593A
50 Ohm Load (6 required)	•	٠	•	•	•	٠	٠	٠	•	•	•	• • •	

PROCEDURE:

1. Connect equipment as shown in Figure 4-15 (with Signal Generator connected to spectrum analyzer through 0.5 - 400 MHz amplifier) after setting Signal Generator's controls as follows:

Meter Function
COUNTER MODE: EXPAND Off
LOCK
Source
AMOFF
FM
BANGE
FREQUENCY TUNE
OUTPUT LEVEL
RF ON/OFF

- 2. Set spectrum analyzer's resolution bandwidth to 10 kHz, input attenuation to 0 dB, frequency span per division (scan width) to 20 MHz, scale to log (10 dB per division), scale reference level controls to -50 dBm, and scale center frequency controls to 100 MHz. Calibrate the analyzer by using the scale reference level controls to set the -107 dBm signal from the generator to the -37 dB graticule line on the display. Disconnect generator from analyzer and connect 50 ohm terminations to generator's output ports (including the Auxiliary RF Output on rear panel).
- 3. Connect one-inch loop antenna to analyzer through 0.5 400 MHz amplifier. Hold end of loop antenna cylinder in contact with all surfaces of Signal Generator; set analyzer's center frequency controls to 300 MHz and repeat. All signals and noise should be below the -27 dB graticule line on analyzer's display (below -97 dBm) from 0.5 to 400 MHz.

- —97 dBm _____

4. Replace 0.5 - 400 MHz amplifier with 400 - 1200 MHz amplifier. Set analyzer's center frequency controls to 500 MHz; set generator's RANGE control to 256 - 512 MHz and FREQUENCY TUNE control to 500 MHz, and connect generator to analyzer and calibrate analyzer as specified in step 2. Then reterminate RF OUTPUT, reconnect loop antenna to analyzer and hold end of loop antenna cylinder in contact with all surfaces of generator. All signals and noise should be below the -27 dB graticule line on analyzer's display (below -97 dBm) from 400 MHz to 600 MHz.

-97 dBm _____

4-29. OUTPUT LEAKAGE TEST (Cont'd)

5. Set the analyzer's center frequency controls to 700, 900, and 1100 MHz. Hold the end of the loop antenna cylinder in contact with all surfaces of the generator at each frequency setting. All signals and noise should be below the -27 dB graticule line (below -97 dBm) from 600 MHz to 1200 MHz.

--97 dBm_____

4-30. INTERNAL MODULATION OSCILLATOR TEST

SPECIFICATION:

Standard:

Frequency: fixed 400 Hz and 1000 Hz $\pm 2\%$. Output Level: indicated 10 mVrms to 1 Vrms into 600 ohms.

Option 001:

Frequency: variable 20 Hz to 600 kHz $\pm 10\%$ in 5, decade continuous bands plus fixed 400 Hz and 1000 Hz $\pm 2\%$.

Output Level: 20 mVrms to 3 Vrms into 600 ohms.

DESCRIPTION:

The internal modulation oscillator output is measured with a voltmeter and a frequency counter to verify its frequency range and accuracy and its level.

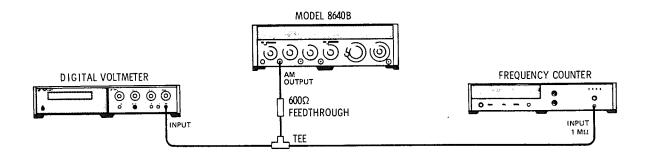


Figure 4-16. Internal Modulation Oscillator Test Setup

EQUIPMENT:

Frequency Counter											HP 5327C
Digital Voltmeter		•							Η	Ρ	3480B/3484A
600 Ohm Feedthrou	ugh Termination		•			•			•	•	. HP 11095A

4-30. INTERNAL MODULATION OSCILLATOR TEST (Cont'd)

PROCEDURE:

1. Connect equipment as shown in Figure 4-16 after setting Signal Generator's controls as follows:

AM		INT
AUDIO OUTPÚT LEVEL		Standard)
	3V (Op	tion 001)
MODULATION		Full cw
MODULATION FREQUENCY		Iz (fixed)
FM		OFF

2. The frequency counter should read 400 ± 8 Hz. The voltmeter should read greater than 1 Vrms on a standard instrument, 3 Vrms on an Option 001.

392_____408 Hz Standard: 1.0 Vrms_____ Option 001: 3.0 Vrms_____

3. Set MODULATION FREQUENCY to 1 kHz (fixed). The frequency counter should read 1 kHz \pm 20 Hz and the voltmeter should read as specified above.

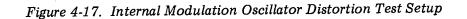
980_____1020 Hz Standard: 1.0 Vrms_____ Option 001: 3.0 Vrms_____

4. If testing an Option 001, set AUDIO OUTPUT LEVEL to 3V and slowly tune MODULATION FREQUENCY through its variable range from 20 Hz to 600 kHz. The MODULATION FREQUENCY controls should read within ±10% of the frequency counter reading at all frequencies.

Frequency:______±10%

4-31. INTERNAL MODULATION OSCILLATOR DISTORTION TEST (Option 001)

SPECIFICATION:


Total Harmonic Distortion: <0.25% 400 and 1 kHz fixed tones. <0.5% 20 Hz to 2 kHz. <1.0% 2 kHz to 600 kHz.

DESCRIPTION:

A distortion analyzer is used to measure distortion on the output of the variable internal modulation oscillator.

4-31. INTERNAL MODULATION OSCILLATOR DISTORTION TEST (Option 001) (Cont'd)

EQUIPMENT:

Distortion Analyzer .																							•		HP 333A	
																								н	ID 11005Δ	
600 Ohm Feedthrough		•	•	٠	٠	٠	٠	•	٠	٠	٠	•	۰	•	۰	٠	٠	•	•	•	•	•	•	T	1 110001	,

PROCEDURE:

1. Connect equipment as shown in Figure 4-17 after setting Signal Generator's controls as follows:

AM	INT
AUDIO OUTPUT LEVEL	3V
MODULATION FREQUENCY As speci	ned
FM	JFF

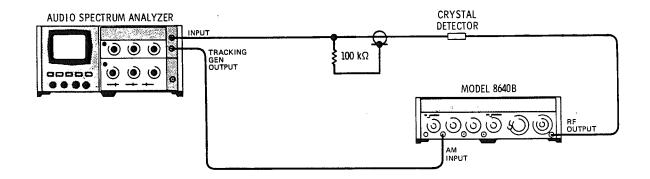
2. Set the MODULATION FREQUENCY controls to various frequencies within the variable ranges shown below. At each frequency tested, calibrate the distortion analyzer and measure the distortion. It should be as shown.

Frequency Range	Distortion
20 Hz to 2 kHz	<0.5%
2 kHz to 600 kHz	<1.0%

3. Set the MODULATION FREQUENCY controls to the 400 Hz and 1 kHz fixed frequencies. Distortion at both frequencies should be below 0.25%.

400 Hz:	0.25%
1 kHz:	0.25%

4-32. AM 3 dB BANDWIDTH TEST


SPECIFICATION:

AM 3 dB Bandwidth:

Frequency Bands	0 to 50% AM	50 to 90% AM
0.5 - 2 MHz	20 kHz	12.5 kHz
2 - 8 MHz	40 kHz	25 kHz
8 - 512 MHz	60 kHz	50 kHz

DESCRIPTION:

An audio spectrum analyzer is used to measure the 3 dB bandwidth. The analyzer is set to sweep over the specified audio frequency range and its tracking generator output is used to amplitude modulate the Signal Generator. The generator's RF output is detected and fed to the analyzer's input. Amplitude variation is measured on the analyzer's display.

Figure 4-18. AM 3 dB Bandwidth Test Setup

EQUIPMENT:

Audio Spectrum	Analyzer							•					•	H	P 1	41	T	/8552B/8556A
Crystal Detector																		
$100 \ k\Omega$ Resistor		•	•	•		•	•	÷	•	•	•	•	•	•	•		•	HP 0757-0465

4-32. AM 3 dB BANDWIDTH TEST (Cont'd)

PROCEDURE:

`

1. Connect equipment as shown in Figure 4-18 after setting Signal Generator's controls as follows:

Meter Function
COUNTER MODE: EXPAND Off
LOCK
Source
AMDC
MODULATION
FM
RANGE
FREQUENCY TUNE
OUTPUT LEVEL
RFON/OFF ON

- 2. Set analyzer's center frequency controls to 1 kHz, fixed (not scanning) and adjust tracking generator's output level controls for 50% AM as indicated on Signal Generator's panel meter.
- 3. Now set spectrum analyzer's resolution bandwidth to 1 kHz, and set frequency span (scan width) controls for a zero to 100 kHz span. Set display for 2 dB per division.
- 4. Set analyzer's display reference level controls to display the detected sweep. Slowly tune Signal Generator from 8 to 16 MHz while noting amplitude variations from 0 60 kHz on the display. The variation should be <3 dB referenced to the level at 1 kHz.

_____3 dB

Ç

5. Set analyzer and Signal Generator as shown below. At each RANGE switch setting, repeat the procedure outlined in steps 2 through 4, except set analyzer for the frequency and %AM shown. The amplitude variation should, in each case, be <3 dB.

Signal Generator RANGE	% AM (Tracking Gen. Level)	Frequency Span	Amplitude Variation
8 - 16 MHz	90%	0 to 50 kHz	3 dB
4 - 8 MHz	50%	0 to 40 kHz	3 dB
4 - 8 MHz	90%	0 to 25 kHz	3 dB
1 - 2 MHz	50%	0 to 20 kHz	3 dB
1 - 2 MHz	90%	0 to 12.5 kHz	3 dB

1

4-33. AM DISTORTION TEST

SPECIFICATION:

AM Distortion: (at 400 Hz and 1 kHz rates)

Frequency Bands	0 - 50% AM	50 - 90% AM
0.5 - 512 MHz	<1%	<3%

DESCRIPTION:

A spectrum analyzer (used to demodulate the AM) is connected to RF OUTPUT, and percent of AM is set; a distortion analyzer is connected to the analyzer's vertical output and used to measure AM distortion.

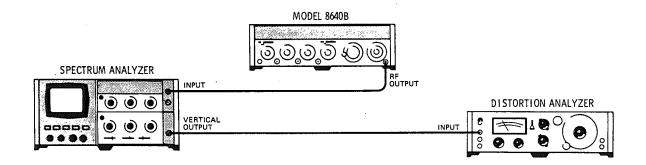


Figure 4-19. AM Distortion Test Setup

EQUIPMENT:

Spectrum Analyzer	 HP 141T/8552B/8554B
Distortion Analyzer	 HP 333A

PROCEDURE:

1. Connect equipment as shown in Figure 4-19 after setting Signal Generator's controls as follows:

Meter Function .							•			•				•	•			AM
COUNTER MODE:	EXPAND						•				•			•			•	Off
	LOCK .							•										\mathbf{Off}
	Source .								•									INT
AM				•		• •											•	OFF
MODULATION .		•			•							•			•	F	ul	l ccw

4-33. AM DISTORTION TEST (Cont'd)

MODULATION FREQUENCY
FMOFF
RANGE
FREQUENCY TUNE
OUTPUT LEVEL
RFON/OFF

- 2. Set spectrum analyzer's resolution bandwidth to 300 kHz, input attenuation to 20 dB, frequency span per division (scan width) to 10 MHz, scale to linear, and adjust center frequency and scale reference level controls to center the 512 MHz signal on the display. Set frequency span per division to 0 Hz and display smoothing (video filter) to 10 kHz. Peak trace on display with center frequency controls; set trace to the center of display with reference level controls.
- 3. Set generator's AM switch to INT and adjust MODULATION control for 50% modulation as read on generator's panel meter.
- 4. Calibrate the distortion analyzer for 1 kHz. Measure and record distortion; it should be less than 1% with trace peaked on analyzer display.

_____ 1%

5. Use generator's MODULATION control to set AM percent to 70% and 90%; calibrate the distortion analyzer and measure distortion at each modulation depth. Distortion should be less than 3% with trace peaked on analyzer display.

70% AM:	 3%
90% AM:	 3%

6. Increase generator's RF OUTPUT LEVEL one step cw and reduce the vernier to give -17 dBm. Repeat steps 3 to 5.

4-34. AM SENSITIVITY AND ACCURACY TEST

SPECIFICATION:

External AM Sensitivity: (400 Hz and 1 kHz rates) (0.1 \pm 0.005)% AM per mV peak into 600 Ω with AM vernier at full CW position.

Indicated AM Accuracy: (400 Hz and 1 kHz rates using internal meter)

±8% of reading on 0 - 10 scale

 $\pm 9\%$ of reading on 0 - 3 scale (for greater than 10% of full scale).

4-34. AM SENSITIVITY AND ACCURACY TEST (Cont'd)

DESCRIPTION:

AM sensitivity accuracy and meter accuracy are measured by comparing the actual amount of amplitude modulation to the level of the input modulating signal. A spectrum analyzer is used to demodulate the AM. The analyzer is used with zero frequency span at the carrier frequency. A DVM is used to measure the ac and dc voltages at the analyzer's vertical output, and the dc value of the carrier is set to 282.8 mVdc; the rms value of the modulation is then a very accurate measure of AM percent (% AM is 1/2 the ac voltage in mVrms).

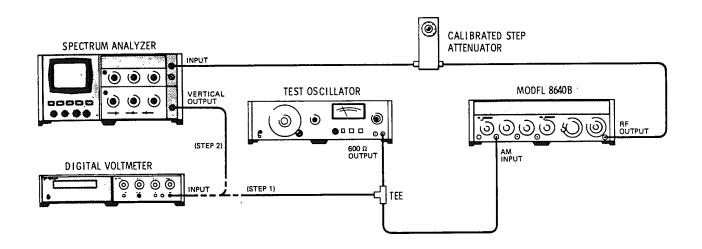


Figure 4-20. AM Sensitivity and Accuracy Test Setup

EQUIPMENT:

Spectrum Analyzer							•					•	H	IP	141T/8552B/8554B
Digital Voltmeter .															. HP 3480B/3484A
Test Oscillator															
Calibrated Step Attenu	lator	•	•	 •	•	•	•	•	•	•	•	•	•	•	HP_355D OPT H36

PROCEDURE:

1. Connect equipment as shown in Figure 4-20 after setting Signal Generator's controls as follows:

Meter Function .		 	 	AM
COUNTER MODE:	EXPAND	 	 	Off
	LOCK	 	 	Off
	Source	 	 	INT
AM		 	 	AC
MODULATION .				

C

í

4-34. AM SENSITIVITY AND ACCURACY TEST (Cont'd)

FM
RANGE
FREQUENCY TUNE
OUTPUT LEVEL
full cw, vernier full cw)
RFON/OFF ON

- 2. Set test oscillator for a 1 kHz, 636.39 mVrms signal as read on DVM (90% AM). Disconnect DVM from test oscillator (leave oscillator connected to generator). Connect DVM to spectrum analyzer's vertical output. Set calibrated step attenuator to 0 dB.
- 3. Set spectrum analyzer's resolution bandwidth to 300 kHz, input attenuation to 20 dB, frequency span per division (scan width) to 20 kHz (tuning stabilizer on), scale to linear, and adjust center frequency and scale reference level controls to center the 512 MHz signal on the display. Set frequency span per division to 0 Hz and display smoothing (video filter) to 10 kHz. Peak the trace on the display with the center frequency controls; set the trace to the center of the display with the reference controls.

NOTE

Step 4 measures the analyzer's dc offset (V_{off}) and must be performed to ensure the accuracy of this test. However if V_{off} for the analyzer being used has recently been measured and noted, skip step 4 and go on to step 5 (and eliminate the calibrated step attenuator from the test setup).

- 4. Measure analyzer's dc offset (V_{off}) by performing steps "a" through "f".
 - a. Set generator's controls as follows:

Meter Function					 	 	. LEVEL
AM					 	 	OFF
RANGE					 	 	2 - 4 MHz
FREQUENCY TU	INE	••	• •	• •	 	 • • • • •	3 MHz

- b. Set analyzer's center frequency controls to 3 MHz.
- c. Adjust analyzer's reference level controls for -500 mVdc indicated on DVM (V_{DET 1}).
- d. Set step attenuator to 20 dB. Note DVM reading ($V_{DET 2}$).
- e. Calculate V_{off} where

$$V_{off} = \frac{V_{DET 2} - \alpha V_{DET 1}}{1 - \alpha}$$

4-34. AM SENSITIVITY AND ACCURACY TEST (Cont'd)

and $\alpha = V_{RF2}/V_{RF1}$ (i.e., α = attenuation; for 20 dB it is 0.1)

therefore

$$V_{off} = \frac{V_{DET 2} - 50 \text{ mVdc}}{0.9}$$

- f. Reset step attenuator to 0 dB, Signal Generator as specified in step 1, and spectrum analyzer as specified in step 3.
- 5. To calibrate the spectrum analyzer for the percent of AM measurement, use the analyzer's reference level controls to set -282.8 mV + V_{off} at vertical output (as measured on the DVM). For example, if V_{off} is +50.0 mV, then set -282.8 mV + (+50.0 mV) or -232.8 mV at vertical output. (Check that trace is peaked on analyzer display.)
- 6. To measure modulation percent, set DVM to measure mVrms (ac only). The DVM should read 180 mVrms ± 5%. (Check that trace is peaked on analyzer display.)

External Sensitivity Accuracy: 171.0 _____ 189.0 mVrms

7. To check indicated accuracy, set test oscillator's amplitude controls for a reading of 9 (90% AM) on the 0 - 10 scale of generator's panel meter. The DVM should read 180 mVrms ±8%. (Check that trace is peaked on analyzer display.)

165.6 _____ 194.4 mVrms

8. Set the test oscillator's amplitude controls for the panel meter readings shown below. The DVM should read as specified. (After each reading, check that trace is peaked on analyzer display.)

0/ 0.84	Panel Mete	er	Divised Malanatan Banding							
% AM -	Reading (Set)	Scale	Digital Voltmeter Reading							
70%	7	0 - 10	128.8 151.2 mVrms							
50%	5	0 - 10	92.0 108.0 mVrms							
30%	either 3	0 - 10	55.2 64.8 mVrms							
	or 3	0 - 3	54.6 65.4 mVrms							
20%	2	0 - 3	36.4 43.6 mVrms							
10%	1	0 - 3	18.2 21.8 mVrms							

NOTE

30% AM may be set on either the 0 - 10 scale or the 0 - 3 scale, depending upon whether 30% is approached from above or below.

ſ

4-35. PEAK INCIDENTAL PHASE MODULATION TEST

SPECIFICATION:

Peak Incidental PM (at 30% AM): Less than 0.15 radians, 0.5 to 128 MHz. Less than 0.3 radians, 128 to 512 MHz.

DESCRIPTION:

A vector voltmeter is used to compare the phase of the signal into the generator's modulation amplifier with the phase of the same signal (modulated at a 0.1 Hz rate) at the RF OUTPUT port. The signal is supplied by the generator's own oscillator and divider circuits and has low incidental PM.

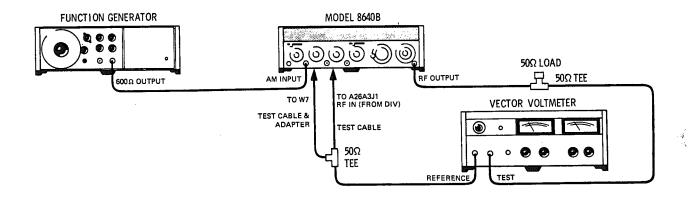


Figure 4-21. Peak Incidental Phase Modulation Test Setup

EQUIPMENT:

Function Generator .						•			•				•	•	•								. HP 3300A	7
Vector Voltmeter					•				•	•	•	•	•	•	•	•	•	•	•	•	•	•	. HP 8405A	ł
50 Ohm Tee (2 required	l)						•		•		•				•	•		•	•	•		•	HP 11536A	Ł
50 Ohm Load	•	•													•		•	•	•	•			HP 11593A	A
Test Cable (2 required)		•					•	•		•			•	•	•	•	•		•		HI	21	1592-6000	1
Adapter		•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	H	P 1250-082	7

4-35. PEAK INCIDENTAL PHASE MODULATION TEST (Cont'd)

WARNING

This test is performed with power supplied to the instrument while protective covers are removed. Be careful when performing this test. Line voltage is always present on terminals including the power input connector, fuse holder, power switch, etc. In addition, when the instrument is on, energy available at many points may result in personal injury or death when contacted.

Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its line power source.

PROCEDURE:

1. Disconnect instrument from the line power source. Remove bottom cover from Signal Generator. Remove semi-rigid coaxial cable W7 from jack A26A3J1 labeled RF IN (FROM DIV). Connect one test cable from the tee to A26A3J1; connect other test cable, with adapter, from the tee to W7. Connect instrument to line power source. Allow one hour warm-up time before continuing with this test.

NOTE

See the last foldout sheet in this manual for component identification.

2. Finish connecting equipment as shown in Figure 4-21 after setting Signal Generator's controls as follows:

Meter Function .																		
COUNTER MODE:																		
		-	-	-		-	-	-	-	-	-	-	-	-	-	-	• • • • • • •	
AM		•		•	•	•	•	•	•	•	•			•		•		DC
FM		•	•	•	•	•	•		•		•			•				OFF
RANGE				•	•	•				•	•			•	•		256 - 5	512 MHz
FREQUENCY TUN	IE			•			•								•		8	512 MHz
OUTPUT LEVEL		•					•								-	-7	dBm (Vernier	full cw)
RF ON/OFF											•	•			•			ON

- 3. Set function generator for 1 kHz at approximately 500 mVrms and adjust Signal Generator's MODU-LATION control for 30% AM as read on Signal Generator's panel meter. Set function generator for 0.1 Hz. (The % AM remains the same. The low rate is necessary for the vector voltmeter's metering circuitry.)
- 4. Set Signal Generator's AM switch to OFF. Set vector voltmeter's frequency range to 300 600 MHz. Zero the voltmeter's phase meter.
- 5. Set Signal Generator's AM switch to DC. The vector voltmeter's phase meter should indicate less than $\pm 17.2^{\circ}$ of deviation (maximum).

_____±17.2°

C

ſ

3

PERFORMANCE TESTS

4-35. PEAK INCIDENTAL PHASE MODULATION TEST (Cont'd)

6. Set Signal Generator's RANGE to 64 - 128 MHz, FREQUENCY TUNE to 128 MHz and repeat steps 3 through 5 (except set vector voltmeter frequency range to 80 - 150 MHz). The voltmeter's phase meter should indicate less than ±8.6° of deviation (maximum).

_____ ±8.6°

- 7. Disconnect instrument from the line power source. Remove test cables, reconnect cable W7 to jack A26A3J1, and replace bottom cover. Connect instrument to line power source. Allow one hour warm-up time before continuing with this test.
- 8. Check Signal Generator for correct RF output on each frequency range.

Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its line power source.

WARNING

4-36. PULSE MODULATION TEST

SPECIFICATION:

Pulse Modulation (specifications apply for top 10 dB of output vernier range):

Frequency Bands (MHz)	0.5 - 1	1 - 2	2 - 8	8 - 32	32 - 512
Rise and Fall Times	<9 µs	<4 μs	<2 μs	<1	μs
Pulse Repetition Rate	50 Hz to	50 kHz	50 Hz to 100 kHz	50 Hz to 250 kHz	50 Hz to 500 kHz
Pulse Width Minimum for Level Accuracy within 1 dB of CW (>0.1% duty cycle)	10	μs	5 µs	2	μs

4-36. PULSE MODULATION TEST (Cont'd)

DESCRIPTION:

A pulse generator is used to pulse modulate the Signal Generator. The RF pulse output is detected and displayed and measured on an oscilloscope. For RF outputs above 32 MHz, a reference signal generator and a mixer are used to down-convert the signal to within the range of the oscilloscope.

NOTE

If a high frequency oscilloscope is available, such as the HP 183C/1830A/1840A, the above measurement may be made directly to frequencies slightly beyond the oscilloscope's nominal bandwidth. Use the oscilloscope's 50Ω input.

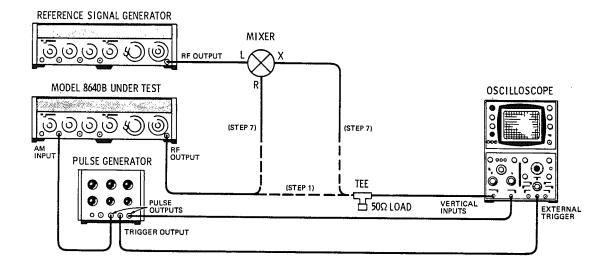


Figure 4-22. Pulse Modulation Test Setup

EQUIPMENT:

Reference Signal	Ge	en	er	at	or			•			•															•	. н	P a	864	40	A
Mixer	•	•	•	•	•	•	•	•	•	•	•		•	•	•		•	•				•		•			HP	10	05	14	Α
50 Ohm Load .	•	•	•	•	•									•			•										HP	1:	159	93.	A
Pulse Generator	•	•	•	•	•	•	•		•		•	•	•		•		•	•	•	•							. H	P a	80	03.	A
Oscilloscope	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•			H	P :	18	80	A,	/1	801.	A /	18	20	С
Crystal Detector	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	. H	P	84'	71.	A

NOTE

The reference signal generator should have a frequency range of 20 - 500 MHz with an output of +7 dBm.

6

Ę

4-36. PULSE MODULATION TEST (Cont'd)

PROCEDURE:

1. Connect equipment as shown in Figure 4-22, with oscilloscope connected directly to test generator's RF OUTPUT, after setting test Signal Generator's controls as follows:

Meter Function
COUNTER MODE: EXPAND Off
LOCK
Source
AM
FMOFF
RANGE
FREQUENCY TUNE
OUTPUT LEVEL
RF ON/OFF

- 2. Set pulse generator for a repetition rate of 100 Hz, a pulse width of 10 μ s, and an amplitude of 1V.
- 3. Adjust oscilloscope to display the RF pulse envelope. Readjust the pulse width for 10 μ s (measured at 50% amplitude points) and measure the rise and fall times (see Figure 4-23). Both should be less than 9 μ s (measured between 10% and 90% of the full pulse amplitude).

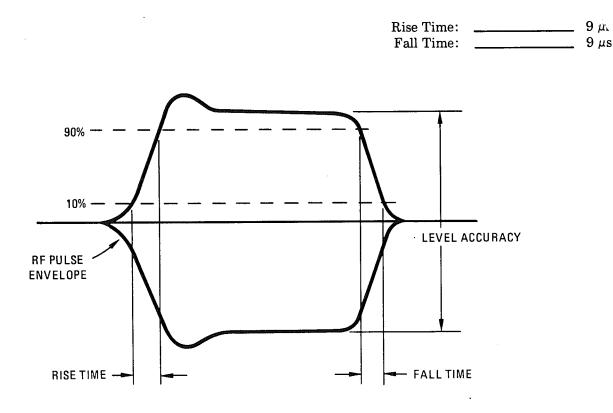


Figure 4-23. Pulse Measurements

11.

4-36. PULSE MODULATION TEST (Cont'd)

- 4. Set test Signal Generator's AM switch to OFF and adjust oscilloscope's vertical controls for 6 divisions of deflection on the display (peak to peak).
- 5. Set test Signal Generator's AM switch to PULSE. Pulse amplitude (peak to peak) on oscilloscope's display should be 5.4 to 6.7 divisions.

Level Accuracy 5.4 _____ 6.7 div

6. Repeat steps 1 through 5 for the frequency ranges shown below. The rise and fall times and level accuracy should be as specified.

Signal Generator	Pulse G	enerator			
Frequency RANGE	Pulse Rate	Pulse Width	Rise Time	Fall Time	Level Accuracy
1 - 2 MHz	100 Hz	10 µs	<4 μs	<4 μs	5.4 6.7 div
2 - 4 MHz	200 Hz	5 µs	$=$ $< 2 \mu s$	$_$ $<2 \mu s$	5.4 6.7 div
4 - 8 MHz	200 Hz	5 μs	$_$ $< 2 \mu s$	<2 μs	5.4 6.7 div
8 - 16 MHz	500 Hz	2 μs	<1 μs		5.4 6.7 div
16 - 32 MHz	500 Hz	2 µs	<1 μs	<1 µs	5.4 6.7 div

- 7. Connect test generator to mixer and mixer to oscilloscope (across 50 ohm load).
- 8. Repeat steps 2 through 5 for the frequency ranges shown below. At each frequency range, set the pulse generator as specified, and set the reference signal generator for an output frequency 10 MHz below the output frequency of the test generator. The reference generator's output should be at +7 dBm with no modulation.

Signal Generator	Pulse Generator				
Frequency RANGE	Pulse Rate	Pulse Width	Rise Time	Fall Time	Level Accuracy
32 - 64 MHz	500 Hz	2 μs	<1.05	<1 μs	5.4 6.7 div
64 - 128 MHz	500 Hz	2 μs		$_{} < 1 \mu s$	5.4 6.7 div
128 - 256 MHz	500 Hz	2 μs		$=$ <1 μ s	5.4 6.7 div
256 - 512 MHz	500 Hz	2 μs	1	<1 μs	5.4 6.7 div

9. Increase the test Signal Generator's RF OUTPUT LEVEL one step cw and reduce the vernier to give -17 dBm. Repeat steps 3 to 8.

4-37. PULSE ON/OFF RATIO TEST

SPECIFICATION:

Pulse ON/OFF ratio at maximum vernier: >40 dB.

DESCRIPTION:

The on/off ratio of the pulse modulation circuits is measured with a spectrum analyzer.

EQUIPMENT:

PROCEDURE:

1. Connect generator's RF OUTPUT to analyzer's input after setting Signal Generator's controls as follows:

Meter Function							•	\ldots
								Off
								Off
								INT
								OFF
FM								OFF
BANGE		÷						256 - 512 MHz
FREQUENCY TUNE	 7	•						256 MHz
OUTPUT LEVEL		•						-7 dBm (Vernier full cw)
RF ON/OFF		•	•••	•••		•••	•	ON

- 2. Set spectrum analyzer's input attenuation to 20 dB. Adjust center frequency controls to center the 256 MHz signal on the display. Adjust scale reference level controls to set the signal to the top (0 dB) graticule line with the scale controls set to display 10 dB per division.
- 3. Set generator's AM switch to PULSE. The signal on the analyzer's display should decrease more than 40 dB.

40 dB _____

20

4. Repeat steps 1 through 3 with the RANGE switch set to each of its other positions. At each position, the signal on the analyzer's display should decrease more than 40 dB.

40 dB _____

4-38. FM 3 dB BANDWIDTH TEST

SPECIFICATION:

FM 3 dB Bandwidth: Internal and external AC; 20 Hz to 250 kHz. External DC; dc to 250 kHz.

DESCRIPTION:

An audio spectrum analyzer is used to measure the 3 dB bandwidth. The analyzer is set to sweep over the specified audio frequency range and its tracking generator output is used to frequency modulate the Signal Generator. The generator's RF output is demodulated with an FM discriminator. The demodulated signal is fed to the analyzer's input and any amplitude variation is measured on the analyzer's display. Bandwidth is checked at maximum deviation on the 8 - 16 MHz band.

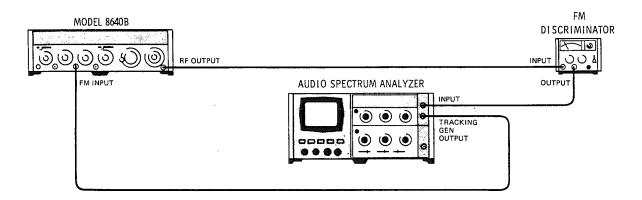


Figure 4-24. FM 3 dB Bandwidth Test Setup

EQUIPMENT:

Audio Spectrum Analyzer		•	•	•						H	P	14	11	Г/	85	552B/8556A
FM Discriminator					•	•					•				•	. HP 5210A
Filter Kit (For Discriminator)	•	•	•	•	•		•	•	•	•	•	•	•	•	•	HP 10531A

PROCEDURE:

1. Connect equipment as shown in Figure 4-24 after setting Signal Generator's controls as follows:

Meter Function .															•	•	•			•			•	\mathbf{FM}
COUNTER MODE:	EXPAND					•	•			•	•	•		•	•		•	•	•	•	•			Off
	LOCK			•		•			•							•						•		Off
	Source	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	INT

3 dB

4-38. FM 3 dB BANDWIDTH TEST (Cont'd)

AM	
FM	$\dots OFF$
PEAK DEVIATION	80 kHz
PEAK DEVIATION Vernier	
RANGE	
FREQUENCY TUNE	8 MHz
OUTPUT LEVEL	. +13 dBm
RF ON/OFF	ON

- 2. Prepare a 1 MHz Butterworth low-pass filter and install it in the discriminator. Set discriminator's range to 10 MHz and input sensitivity to 1V.
- 3. Set Signal Generator's FM switch to DC. Set spectrum analyzer's resolution bandwidth to 3 kHz and its center frequency controls to 1 kHz (with no sweep). Set analyzer's tracking generator output level for 80 kHz peak deviation as read on generator's panel meter. Set the analyzer's frequency controls for a 0 to 250 kHz sweep. Set the analyzer's display for 2 dB per division; adjust the display reference level controls to display the demodulated sweep.
- 4. Measure the sweep on the analyzer's display. Total amplitude variation from 20 Hz to 250 kHz should be < 3 dB.

NOTE

If the FM discriminator's incidental AM rejection is insufficient, the generator could appear to be out of specification. To check the discriminator, note analyzer's reading (in dBm), set generator's AM switch to AC and connect analyzer's tracking generator output to AM INPUT. Set MODULATION for 10% as read on panel meter. The analyzer should read >30 dB below the reading noted above. If it does not, adjust discriminator sensitivity and trigger level (or generator's OUTPUT LEVEL vernier) until it does. Then repeat steps 2 through 6.

4-39. FM DISTORTION TEST

SPECIFICATION:

FM Distortion: (at 400 and 1000 Hz rates)
<1% for deviations up to 1/8 maximum allowable.
<3% for maximum allowable deviation.

110

4-39. FM DISTORTION TEST (Cont'd)

DESCRIPTION:

The Signal Generator is modulated with a 1 kHz signal. The generator's RF output is then demodulated with an FM discriminator and the distortion on the discriminator output is measured with a spectrum analyzer.

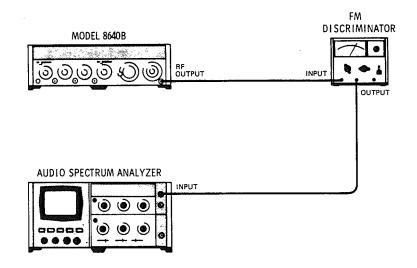


Figure 4-25. FM Distortion Test Setup

EQUIPMENT:

FM Discriminator		•		•		•		•	•	•			•			•	. H	ΙP	5210A	ł
Filter Kit (For Discriminator)			•			•				•		•	•	•	•	•	HF	' 1	0531 <i>/</i>	ł
Audio Spectrum Analyzer	•		•	•	•	•	•	•		•	HP)]	۱4	17	[/]	85	552	B/	85564	ł

PROCEDURE:

1. Connect equipment as shown in Figure 4-25 after setting Signal Generator's controls as follows:

Meter Function	M
COUNTER MODE: EXPAND	ff
LOCK	ff
Source \ldots	Т
AMOF	\mathbf{F}
MODULATION FREQUENCY	1)
FM	Т
PEAK DEVIATION	ĺz
PEAK DEVIATION Vernier	w
RANGE	Íz
FREQUENCY TUNE	Iz
OUTPUT LEVEL	V)
RFON/OFF O	Ν

ſ

¢

4-39. FM DISTORTION TEST (Cont'd)

- 2. Using the filter kit, prepare a 1 MHz Butterworth low-pass filter and install it in the discriminator.
- 3. Set discriminator's range to 10 MHz and sensitivity to 1V.
- 4. Set spectrum analyzer's resolution bandwidth to 100 Hz and its center frequency controls for a 0 to 5 kHz span. Set the display for 10 dB per division.
- 5. Use generator's PEAK DEVIATION vernier to set 80 kHz of peak deviation (as read on panel meter). Use analyzer's display reference level controls to set the demodulated 1 kHz signal to the top (reference) graticule line on the display.
- 6. Note the level of the 1 kHz signal's harmonics (2 kHz, 3 kHz, etc.). For less than 3% distortion, they should be more than 30.5 dB below the reference graticule line.

Maximum Deviation: 30.5 dB

- 7. Set generator's PEAK DEVIATION switch to 10 kHz. If necessary, use generator's PEAK DEVIATION vernier to set 10 kHz of peak deviation; use analyzer's display reference level controls to set the demodulated 1 kHz signal to the reference graticule line.
- 8. For less than 1% distortion, the 1 kHz signal's harmonics should be more than 40 dB below the reference graticule line.

1/8 Maximum Deviation: 40 dB

4-40. FM SENSITIVITY AND ACCURACY TEST

SPECIFICATION:

External FM Sensitivity: 1 volt peak yields maximum deviation indicated on PEAK DEVIATION switch with FM vernier at full cw position.

External FM Sensitivity Accuracy: $\pm 6\%$ from 15° to 35° C for FM excluding max peak deviation position. Maximum peak deviation position, $\pm 9\%$ typically.

Indicated FM Accuracy: (400 Hz and 1 kHz rates using internal meter) $\pm 10\%$ of meter reading (for greater than 10% of full scale).

DESCRIPTION:

The Signal Generator's FM sensitivity is checked using the carrier (Bessel) null technique. An externally applied 1 Vpk signal is used to FM the generator. The modulation signal's frequency is adjusted for the first order null of the carrier and the frequency is measured to find peak deviation. (For the first order null of the carrier, peak deviation equals 2.405 times the modulation rate.) The panel meter accuracy is found by comparing its reading to the given peak deviation. The reference generator and mixer convert the signal into the range of the spectrum analyzer.

().-

PERFORMANCE TESTS

4-40. FM SENSITIVITY AND ACCURACY TEST (Cont'd)

NOTE

The ambient temperature must be within 15° to 35°C for this test.

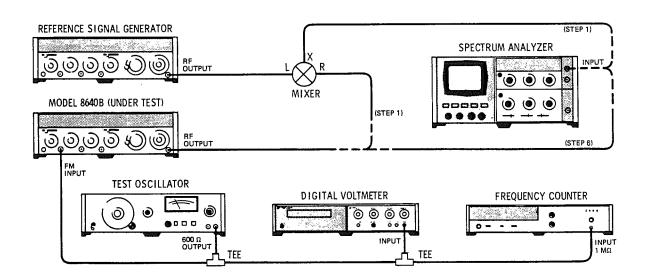


Figure 4-26. FM Sensitivity and Accuracy Test Setup

EQUIPMENT:

Test Oscillator																										
Digital Voltmeter					•								•	Η	P	348	80)B	3/:	34	18	4/	A C	PT	' 0 4	13
Frequency Counter																										
Spectrum Analyzer		•				•		•		•	•		•			HP	1	.4	1′	Γ/	8	55	52E	/8	553	3B
Reference Signal Generator						•	•		•	•	•		•	•	•				•	•	•	•	HF	86	640	A
Mixer	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	ł	IP	105	514	A

NOTE

The reference signal generator should have frequency drift and residual FM specifications equivalent to the Model 8640A.

PROCEDURE:

1. Connect equipment as shown in Figure 4-26 (with test Signal Generator connected to mixer, and mixer connected to analyzer) after setting test generator's controls as follows:

Meter Function .											•													\mathbf{FM}
COUNTER MODE:	EXPAND															•								Off
	LOCK															•								Off
	Source	 •	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	INT

4-40. FM SENSITIVITY AND ACCURACY TEST (Cont'd)

AM	
FM	· · · OFF
PEAK DEVIATION	5 kHz
PEAK DEVIATION Vernier	
RANGE	
FREQUENCY TUNE	512 MHz
OUTPUT LEVEL	—7 dBm
RF ON/OFF	ON

- 2. Set reference signal generator for a 513 MHz, CW signal at +13 dBm.
- 3. Set spectrum analyzer's center frequency controls to 1 MHz, input attenuation to 20 dB, resolution bandwidth to 0.1 kHz, span width per division (scan width) to 1 kHz, and set display to 10 dB per division. Set reference level controls to put peak of the signal at top (log reference) graticule line on the display.
- 4. To check external sensitivity, set test oscillator for a 0.7071 Vrms signal (read on DVM) at approximately 2.079 kHz. Set test generator's FM switch to AC and fine tune test oscillator's frequency for the first carrier null on analyzer's display (at least 50 dB below the top graticule line). With the frequency counter, measure frequency of modulating signal. It should be 2.079 kHz $\pm 6\%$ (i.e., 5 kHz $\pm 6\%$ peak deviation).

1.954 _____ 2.204 kHz

5. Use the procedures given above to check the remaining bands by setting the test Signal Generator's RANGE switch as shown below. As shown in steps 1 through 4, on each range set FM to OFF and tune the generators for a 1 MHz difference. Set the reference on the analyzer, set FM to AC (with a 0.7071 Vrms modulating signal at approximately 2.079 kHz) and tune the modulating signal's frequency for the first carrier null. The signal's frequency should be as shown.

RANGE (MHz)	FREQUENCY TUNE	Reference Generator Frequency	Mod. Signal (kH	
128-256	256 MHz	257 MHz	1.954	2.204
64-128	128 MHz	129 MHz	1.954	2.204
32-64	64 MHz	65 MHz	1.954	2.204
16-32	32 MHz	33 MHz	1.954	2.204
8-16	16 MHz	17 MHz	1.954	2.204
4-8	8 MHz	9 MHz	1.954	2.204
2-4	4 MHz	5 MHz	1.954	2.204
1-2	2 MHz	3 MHz	1.954	2.204

4-40. FM SENSITIVITY AND ACCURACY TEST (Cont'd)

- 6. To check indicated accuracy, set test Signal Generator's RANGE control to 256 512 MHz and FREQUENCY TUNE to 500 MHz. Set reference signal generator for a 501 MHz, CW signal at +13 dBm. Set test generator's FM switch to OFF and tune both generators for a 1 MHz signal at the top graticule line on the analyzer's display.
- 7. Set test signal Generator's FM switch to AC, set test oscillator's frequency for approximately 2.079 kHz, and adjust oscillator's amplitude controls for a reading of 5 (i.e., 5 kHz) on test generator's panel meter (0 5 scale). Tune oscillator's frequency for the first carrier null on the analyzer's display (at least 50 dB below the top graticule line). With frequency counter, measure frequency of modulating signal. It should be 2.079 kHz ± 10%.

1.871 _____ 2.287 kHz

8. Use procedures given in steps 6 and 7 to check indicated accuracy on the remaining bands by setting test generator's RANGE switch as shown below. On each range, set FM to OFF and tune generators for a 1 MHz difference. Set reference on analyzer, set FM to AC (with modulating signal's amplitude set for a test generator panel meter reading of 5 and its frequency set to approximately 2.079 kHz). Then tune modulating signal's frequency for first carrier null. The signal's frequency should be as shown.

RANGE (MHz)	FREQUENCY TUNE	Reference Generator Frequency	Mod. Signal Frequency (kHz)
128-256	256 MHz	257 MHz	1.871 2.287
64-128	128 MHz	129 MHz	1.871 2.287
32-64	64 MHz	65 MHz	1.871 2.287
16-32	32 MHz	33 MHz	1.871 2.287
8-16	16 MHz	17 MHz	1.871 2.287
4-8	8 MHz	9 MHz	1.871 2.287
2-4	4 MHz	5 MHz	1.871 2.287
1-2	2 MHz	3 MHz	1.871 2.287

9. Disconnect test Signal Generator and analyzer from mixer and connect test generator directly to analyzer. Set RANGE to 0.5 - 1 MHz, FREQUENCY TUNE to 1 MHz, FM to OFF, and reset reference on analyzer's display. Set FM to AC (with modulating signal's amplitude set for a test generator panel meter reading of 5 and its frequency set to approximately 2.079 kHz). Then tune the signal's frequency for the first carrier null. The signal's frequency should be 2.079 kHz ±10%.

1.871 _____ 2.287 kHz

4-41. INCIDENTAL AM TEST

SPECIFICATION:

Incidental AM: (at 400 Hz and 1 kHz rates) <0.5% AM for FM up to 1/8 max. allowable deviation. <1% AM for FM at max. allowable deviation.

DESCRIPTION:

An audio signal is used to amplitude modulate the Signal Generator. The resulting modulated RF is detected and used to calibrate an oscilloscope. The generator is then frequency modulated and any incidental AM is measured with the oscilloscope.

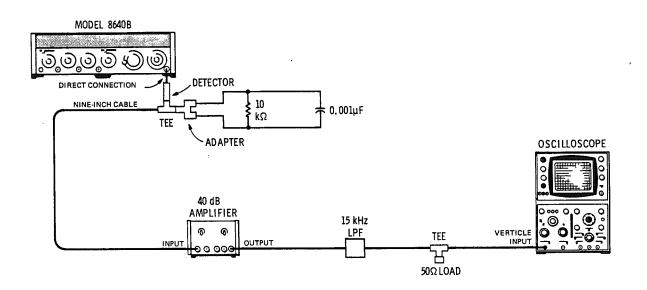


Figure 4-27. Incidental AM Test Setup

EQUIPMENT:

Crystal Detector	423A
15 kHz Low Pass Filter (LPF)	7 Pole
40 dB Amplifier	465A
Oscilloscope HP 180A/1801A/1	.820C
50 Ohm Load	593A
Nine-Inch Cable)502A
Adapter	110A
$0.001 \mu\text{F}$ Capacitor	-0153
10 k Ω Resistor	-0442

4-41. INCIDENTAL AM TEST (Cont'd)

PROCEDURE:

1. Connect equipment as shown in Figure 4-27 (with network, adapter, tee, and detector connected as shown) after setting Signal Generator's controls as follows:

Meter Function
COUNTER MODE: EXPAND Off
LOCK
Source
AM
MODULATION
MODULATION FREQUENCY
FM
PEAK DEVIATION
PEAK DEVIATION Vernier
RANGE
FREQUENCY TUNE
OUTPUT LEVEL +13 dBm (Vernier full cw)
RF ON/OFF

- 2. Set MODULATION for 10% AM as read on panel meter.
- 3. Adjust oscilloscope's vertical gain controls so that the 1 kHz signal has 8 divisions of peak-to-peak deflection (i.e., 1.25% AM per division).
- 4. Set generator's AM switch to OFF and FM switch to INT. Set Meter Function to FM and set PEAK DEVIATION vernier for 2.56 MHz. Increase oscilloscope sensitivity by 10. Using generator's FREQUENCY TUNE control, tune across the band and record the maximum incidental AM read on the oscilloscope. It should be less than 1% (8 divisions peak-to-peak on the display).

Maximum Deivation: _____ 1%

5. Set PEAK DEVIATION switch to 320 kHz. Again, using the generator's FREQUENCY TUNE control, tune across the band. Incidental AM should be less than 0.5% (4 divisions peak-to-peak on the display).

1/8 Maximum Deviation: _____ 0.5%

NOTE

Incidental AM is usually worse case on the 256 - 512 MHz band. If desired, it can be checked on any other band using this test except that on the 0.5 to 16 MHz bands the capacitor across the resistor at the detector's output must be changed to $0.033 \,\mu\text{F}$ (HP 0160-0163); on the 16 to 512 MHz bands, the 0.001 μF capacitor (shown in the test setup) must be used.

1

4-42. COUNTER EXTERNAL SENSITIVITY TEST

SPECIFICATION:

External RF Input: Frequency Range: 1 Hz to 550 MHz Sensitivity: 100 mVrms, ac only, into 50Ω (-7 dBm).

DESCRIPTION:

A test oscillator and the Signal Generator's own RF output are used to verify the counter's range and sensitivity.

Figure 4-28. Counter External Sensitivity Test Setup

EQUIPMENT:

PROCEDURE:

1. Connect RF OUTPUT to COUNTER INPUT as shown in Figure 4-28 after setting Signal Generator's controls as follows:

Meter Function
COUNTER MODE: EXPAND Off
LOCK
Source
TIME BASE VERNIER
AMOFF
FMOFF
RANGE 256 - 512 MHz
FREQUENCY TUNE
OUTPUT LEVEL
RFON/OFF
RF ON/OFF

4-42. COUNTER EXTERNAL SENSITIVITY TEST (Cont'd)

2. Set COUNTER MODE Source to EXT 0 - 550. Slowly tune Signal Generator to 0.5 MHz using RANGE and FREQUENCY TUNE. The counter should indicate the frequency of the signal at RF OUTPUT at all frequencies.

0.5 to 550 MHz _____ ($\sqrt{}$)

3. Disconnect RF OUTPUT from COUNTER INPUT. Connect the oscillator to COUNTER INPUT and set it for 500 kHz at 100 mVrms into 50 ohms. Slowly tune oscillator to 20 Hz. The counter should indicate the frequency of the signal from the test oscillator at all frequencies.

20 Hz to 500 kHz _____ ($\sqrt{}$)

4. Set COUNTER MODE Source to EXT 0 - 10 and slowly tune oscillator from 20 Hz to 10 MHz. The counter should indicate the frequency of the signal from the test oscillator at all frequencies.

20 Hz to 10 MHz _____ (\checkmark)

4-43. INTERNAL REFERENCE ACCURACY TEST

SPECIFICATION:

Accuracy: (after calibration at 25°C and 2-hour warm-up) Better than ±1 ppm for 15° to 35°C. Better than ±3 ppm for 0° to 55°C.

DESCRIPTION:

A frequency counter is used to measure the Signal Generator's counter accuracy. A temperature controlled chamber is used to set the temperature.

FREQUENCY COUNTER	TEMPERATURE CONTROLLED CHAMBER
	TIME BASE REF OUT MODEL 8640B

Figure 4-29. Internal Reference Accuracy Test Setup

4-43. INTERNAL REFERENCE ACCURACY TEST (Cont'd)

EQUIPMENT:

PROCEDURE:

- 1. Connect equipment as shown in Figure 4-29. Check that TIME BASE REF INT/EXT switch on the rear panel is set to INT.
- 2. Set chamber for various temperatures between 15° and 35° C. At each temperature, allow generator to stabilize for two hours, then measure the frequency. It should be 5 MHz ±5 Hz.

4,999,995 _____ 5,000,005 Hz

3. Set the chamber for various temperatures between 0° and 55° C. Again, allow the generator to stabilize for two hours at each temperature and measure the frequency. It should be 5 MHz ±15 Hz.

4,999,985 _____ 5,000,015 Hz

4-44. INTERNAL REFERENCE DRIFT RATE (STABILITY) TEST

SPECIFICATION:

Drift Rate: (after 2-hour warm-up) Time: <0.05 ppm per hr., <2 ppm per yr. Temperature: <2 ppm total variation for room ambient 15° to 35°C. Line Voltage: <0.1 ppm.

NOTE

Because the phase lock mode references the generator's RF oscillator to the counter's frequency reference, the following frequency specifications are also checked in this test.

Frequency Stability (phase lock mode):

Time: <0.05 ppm/hr.

Temperature: <2 ppm total variation (room ambient 15° to 35°C). Line Voltage (+5% to -10% change): <0.1 ppm. Load (with any passive load change): None measurable. Level Change (10 dB on output level vernier): None measurable. Mode Change (CW to FM): None measurable.

444. INTERNAL REFERENCE DRIFT RATE (STABILITY) TEST (Cont'd)

DESCRIPTION:

After a two-hour warm-up period, the internal reference is measured with a frequency counter, a digital to analog converter, and a strip-chart recorder; frequency variations are noted as the specified changes are made. A quartz oscillator is used as a time standard when measuring drift as a function of time and line voltage change.

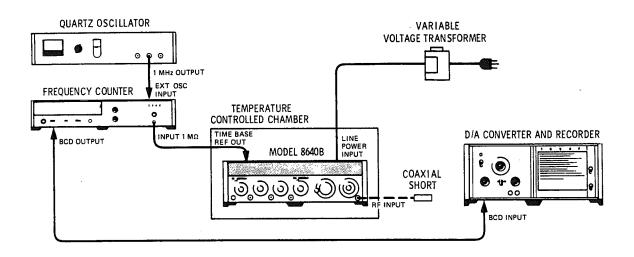


Figure 4-30. Internal Reference Drift Rate (Stability) Test Setup

EQUIPMENT:

Frequency Counter	•	•	•	•	•	•	•		•	•	•	•		•	•	HP 5327C OPT 003
Temperature Controlled Chamb	er		•			•			•		•	•	•	•	•	Statham Model 325
Variable Voltage Transformer										•	•			•		GR W5MT3A
Coaxial Short (Type N Male)	•										•					HP 11512A
Quartz Oscillator								•					٠	•		HP 105B
Digital to Analog Converter .													•		•	HP 581A OPT 002
Recorder (for D/A Converter)		•	•	•	•	•	•	•	•		•		•		•	HP 680

PROCEDURE:

1. Connect equipment as shown in Figure 4-30 after setting Signal Generator's controls as follows:

TIME BASE REF INT/EXT (on rear panel	
COUNTER MODE: LOCK	
AM	
FM	••••••••••••••••••••••••••••••••••••••

4-44. INTERNAL REFERENCE DRIFT RATE (STABILITY) TEST (Cont'd)

PEAK DEVIATION																					5 kHz
PEAK DEVIATION Vernier																					Full cw
RANGE	•	•	·	·	•	·	٠.														0.5 - 1 MHz
OUTPUT LEVEL	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-	+19 dBm
OUTPUT LEVEL	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	ON
RF ON/OFF	•	•	•	•	•	•	•	•	•	٠	•	•	•	٠	•	٠	٠	•	•	•	\ldots

- 2. Set variable voltage transformer to nominal voltage set on generator's line power module (i.e., 100, 120, 220, or 240 Vac). Set temperature controlled chamber for 25°C. Allow equipment to warm up for two hours.
- 3. Set frequency counter so that it's using its internal reference oscillator. Set counter to read frequency directly (i.e., not divided down). Use a 1s gate time so that last three digits span from 000 to 999 Hz.
- 4. Calibrate the recorder for a zero to full-scale reading that corresponds to a 000 to 999 Hz reading of the frequency counter's last three digits.
- 5. To check drift rate as a function of time and line voltage, now set counter so that it's using the quartz oscillator. Set the counter's time base control for a 10s gate time.

NOTE

The above procedure sets the counter's actual gate time to 100s because the reference being used is 1 MHz instead of the 10 MHz reference the counter normally uses. This means that the counter's reading must be divided by 10 to find the actual frequency of the signal being measured (i.e., the recorder's calibration is 0.00 to 9.99 Hz full scale).

6. Record the generator's internal reference frequency for one hour. The frequency change in one hour should be < 0.27 Hz (< 0.05 ppm ± 1 digit counter ambiguity).

Time: _____ 0.27 Hz

NOTE

Any change in line voltage or chamber temperature could make the instrument's drift rate vs time appear to be out of specification.

- 7. Set variable voltage transformer 5% above the nominal voltage set on generator's line power module (e.g., if nominal line voltage is 120 Vac, set transformer for 126 Vac). Then note the frequency (the counter's indication must be divided by 10).
- 8. Set variable voltage transformer 10% below nominal line voltage (e.g., for a nominal 120 Vac, set transformer for 108 Vac), then note the reference frequency. The frequency change from the reading noted in step 7 should be <0.52 Hz (< 0.1 ppm ±1 digit counter ambiguity).

Voltage: _____ 0.52 Hz

4-44. INTERNAL REFERENCE DRIFT RATE (STABILITY) TEST (Cont'd)

NOTE

Any change in chamber temperature could make the instrument's drift rate vs voltage appear out of specification.

- 9. Reset transformer to nominal line voltage. Set temperature controlled chamber to 15°C. Wait two hours to allow generator's internal reference to stabilize, then note its frequency.
- 10. Set temperature controlled chamber to 35°C. Wait two hours, then note the reference frequency. The frequency change from the reading noted in step 9 should be <10.2 Hz (i.e., <2 ppm ±1 digit counter ambiguity).

Temperature: _____ 10.2 Hz

11. Note generator's internal reference frequency, connect coaxial short to RF OUTPUT, then again note reference frequency. Except for the ±1 digit count ambiguity, it should not have changed.

Load: _____ (\checkmark) No Change

12. Remove coaxial short. Note internal reference frequency, set OUTPUT LEVEL switch one step ccw to +9 dBm, then again note reference frequency. Except for the ±1 digit count ambiguity, it should not have changed.

Level Change: _____ ($\sqrt{}$) No Change

13. Note internal reference frequency, set FM switch to AC, then again note reference frequency. Except for the ± 1 digit count ambiguity, it should not have changed.

Mode Change: _____ ($\sqrt{}$) No Change

4-45. PHASE LOCK RESTABILIZATION TIME TEST

SPECIFICATION:

Restabilization Time (phase locked mode): After frequency or band change, or after 1 min. in RF OFF mode; <1 min. after relocking to be within 0.1 ppm of steady-state frequency.

DESCRIPTION:

A frequency counter, digital to analog converter, and strip-chart recorder are used to measure stability after relocking.

4-45. PHASE LOCK RESTABILIZATION TIME TEST (Cont'd)

NOTE

For these tests, ambient room temperature and line voltage should not change.

EQUIPMENT:

Frequency Counter															HP 5327C OPT 003
Digital to Analog Converter .															HP 581A OPT 002
Recorder (for D/A Converter)	-														HP 680
Recorder (IOI D/A Converser)	•	•	•	•	•	•	•	•	•	•	•	•	•	-	••••

PROCEDURE:

1. Connect equipment as shown in Figure 4-1 after setting Signal Generator's control as follows:

COUNTER MODE:	EXPAND	 	 Off	
	LOCK	 	 Off	
	Source	 	 INT	
AM		 	 OFF	
			OFF	
RANGE		 	 	
FREQUENCY TUN	Е	 	 50 MHz	
			ON	

- 2. Warm up equipment for two hours. Then set frequency counter to read frequency directly (i.e., not divided down). Use a 1s gate time so that the last two digits span from 00 to 99 Hz.
- 3. Calibrate the recorder for a zero to full-scale reading that corresponds to a 00 to 99 Hz reading of the frequency counter's last two digits (i.e., 100 Hz full scale).
- 4. Set COUNTER MODE LOCK to ON, wait one minute, then record generator's output frequency for five minutes; the frequency should not vary more than 7 Hz (<0.1 ppm ± 1 digit counter ambiguity).

_____ 7 Hz

5. Set COUNTER MODE LOCK to Off; tune FREQUENCY TUNE control fully ccw and back again to approximately 50 MHz. Repeat step 4; frequency should not vary more than 7 Hz.

_____ 7 Hz

6. Set COUNTER MODE LOCK to Off; set RANGE switch to 64 - 128 MHz and back again to 32 - 64 MHz. Repeat step 4; frequency should not vary more than 7 Hz.

_____ 7 Hz

7. Set COUNTER MODE LOCK to Off; set RF ON/OFF switch to OFF. Wait one minute and set RF ON/OFF switch to ON. Repeat step 4; frequency should not vary more than 7 Hz.

_____ 7 Hz

)

١

 Table 4-1.
 Performance Test Record (1 of 8)

Signa	el 8640B ll Generator l No		Tested By					
Para	Test Desc	ription	Results					
No.		inpuon	Min	Actual	Max			
4-11.	Frequency Range Te	st						
	High End of Band: Low End of Band:	512-1024 MHz 256-512 MHz 128-256 MHz 64-128 MHz 32-64 MHz 16-32 MHz 8-16 MHz 4-8 MHz 2-4 MHz 1-2 MHz 0.5-1MHz 512-1024 MHz 256-512 MHz 128-256 MHz 64-128 MHz 32-64 MHz 16-32 MHz 8-16 MHz 4-8 MHz 2-4 MHz 1-2 MHz 0.5-1 MHz	550.0 MHz 550.0 MHz 275.0 MHz 137.5 MHz 68.70 MHz 34.30 MHz 17.10 MHz 8.500 MHz 4.200 MHz 2.100 MHz 1.070 MHz		230.0 MH 230.0 MH 115.0 MH 57.50 MH 28.80 MH 14.40 MH 7.200 MH 3.600 MH 1.800 MH 0.900 MH			
4-12.			1 kHz 1 kHz 10 kHz		110 Hz 110 Hz			
4-13.	Frequency Stability Restabilization Tim Time After frequency After band cha After RF ON/C	ne Test y change nge			500 Hz 500 Hz 250 Hz 500 Hz			

ſ

(

Ť

Test Description Frequency Stability vs Temperature Test Frequency Stability vs Line Voltage Test +5% to -10% Line Voltage Frequency Stability Test (Load) (Level) (Mode): 10 kHz 20 kHz 40 kHz	Min	Actual	Max 50 kHz 50 Hz
Test Frequency Stability vs Line Voltage Test +5% to -10% Line Voltage Frequency Stability Test (Load) (Level) (Mode): 10 kHz 20 kHz 40 kHz			50 Hz
Test +5% to10% Line Voltage Frequency Stability Test (Load) (Level) (Mode): 10 kHz 20 kHz 40 kHz			
Frequency Stability Test (Load) (Level) (Mode): 10 kHz 20 kHz 40 kHz			
(Load) (Level) (Mode): 10 kHz 20 kHz 40 kHz			
80 kHz 160 kHz 320 kHz 640 kHz 1.28 MHz 2.56 MHz			50 Hz 50 Hz 200 Hz 200 Hz 400 Hz 800 Hz 1.6 kHz 3.2 kHz 6.4 kHz 12.8 kHz 25.6 kHz
Harmonics Test Frequency Range: 0.5-1 MHz 1-2 MHz 2-4 MHz 4-8 MHz 8-16 MHz 16-32 MHz 32-64 MHz 64-128 MHz 128-256 MHz 256-512 MHz	35 dB 35 dB 35 dB 35 dB 35 dB 35 dB 35 dB 35 dB 35 dB 30 dB 30 dB		×
Sub-Harmonics and Non-Harmonic Spurious Test	100 dB		
	100 00		<u> </u>
At 550 MHz >112 dB down At 450 MHz >120 dB down	12 dB 20 dB		
Single Sideband Broadband Noise Floor Test >140 dB down	30 dB		
	2-4 MHz 4-8 MHz 8-16 MHz 16-32 MHz 32-64 MHz 64-128 MHz 128-256 MHz 256-512 MHz Sub-Harmonics and Non-Harmonic Spurious Test Below carrier Single Sideband Phase Noise Test At 550 MHz >112 dB down At 450 MHz >120 dB down Single Sideband Broadband Noise Floor Test	2-4 MHz 35 dB 4-8 MHz 35 dB 8-16 MHz 35 dB 16-32 MHz 35 dB 32-64 MHz 35 dB 128-256 MHz 30 dB 256-512 MHz 30 dB Sub-Harmonics and Non-Harmonic 30 dB Spurious Test 100 dB Single Sideband Phase Noise Test 100 dB At 550 MHz >112 dB down 12 dB At 450 MHz >120 dB down 20 dB Single Sideband Broadband Noise 20 dB	2-4 MHz 35 dB

Table 4-1. Performance Test Record (2 of 8)

÷

.

Dava				Results	
Para No.	Test Descr	iption	Min	Actual	Max
4-21.	Residual AM Test				
	>78 dB down >85 dB down		58 dB 65 dB		
4-22.	Residual FM Test				
	<7.5 Hz		7.5 mVrms		
	$<2.5~\mathrm{Hz}$		2.5 mVrms		
	<7.5 Hz		7.5 mVrms		
	<15 Hz		.15 mVrms		
4-23.	Output Level Accura (Abbreviated)	cy Test			
	Output Level	Meter Reading			
	Full cw	+19 dBm	+17.5 dBm		+20.5 dB
	Full cw	+13 dBm	+11.5 dBm		+14.5 dBi
	Full cw	+5 dBm	+3.0 dBm		+7.0 dBm
	1 step ccw	+13 dBm	+11.5 dBm		+14.5 dBı +9.5 dBm
	1 step ccw	+8 dBm +3 dBm	+6.5 dBm +1.5 dBm		+9.5 dBm
	1 step ccw 1 step ccw	-5 dBm	-7.0 dBm	·····	-3.0 dBm
	2 steps ccw	+3 dBm	+1.5 dBm		+4.5 dBm
	3 steps ccw	—7 dBm	8.5 dB		-5.5 dB
	4 steps ccw	-17 dBm	-2.0 dB		+2.0 dB
	5 steps ccw	—27 dBm	-2.0 dB		+2.0 dB
	6 steps ccw	—37 dBm	-2.0 dB		+2.0 dB
	7 steps ccw	-47 dBm	2.5 dB		+2.5 dB
	8 steps ccw	—57 dBm	2.5 dB		+2.5 dB
	9 steps ccw	-67 dBm	-2.5 dB		+2.5 dB
	10 steps ccw	—77 dBm	-2.5 dB	•	+2.5 dB
	11 steps ccw	—87 dBm	-2.5 dB	······	+2.5 dB
	12 steps ccw	-97 dBm	-2.5 dB	·····	+2.5 dB
	13 steps ccw		-3.0 dB		+3.0 dB
	14 steps ccw	—117 dBm	-3.0 dB		+3.0 dB
		—127 dBm	23 dB		-17 dB
4-24.	Output Level Accura (Complete)	acy Test			
	Output Level	Meter Reading			
	Full cw	+19 dBm	+17.5 dBm		+20.5 dBr
	Full cw	+13 dBm	+11.5 dBm		+14.5 dB
	Full cw	+5 dBm	+3.0 dBm		+7.0 dBn
			1		

Table 4-1. Performance Test Record (3 of 8)

¢

(

. 1

Para				Results	
No.	Test Descri	ption	Min	Actual	Max
4-24.	Output Level Accurac (Complete) (Cont'd)				
	Output Level 1 step ccw 1 step ccw 1 step ccw 1 step ccw 2 steps ccw 3 steps ccw	Meter Reading +13 dBm +8 dBm +3 dBm -5 dBm +3 dBm -7 dBm	+11.5 dBm +6.5 dBm +1.5 dBm -7.0 dBm +1.5 dBm -8.5 dBm		+14.5 dBm +9.5 dBm +4.5 dBm 3.0 dBm +4.5 dBm 5.5 dBm
		17 dBm 27 dBm 37 dBm 47 dBm	-472.0 mVdc -472.0 mVdc -472.0 mVdc -472.0 mVdc		529.6 mVd 529.6 mVd 529.6 mVd 529.6 mVd
		—57 dBm	-445.6 mVdc	. <u></u>	-561.0 mVd
		67 dBm 77 dBm 87 dBm	-445.6 mVdc -445.6 mVdc -445.6 mVdc		561.0 mVd 561.0 mVd 561.0 mVd
		—107 dBm —117 dBm —127 dBm	—445.6 mVdc —445.6 mVdc —445.6 mVdc		561.0 mVd 561.0 mVd 561.0 mVd
		—137 dBm	-445.6 mVdc		-561.0 mVd
		0.013 μV (—144.75 dBm)	-546.9 mVdc		-772.5 mVd
4-25.	Output Level Flatnes	s Test			0.5 dB
4-26.	Output Impedance T	est (In Band)			100 mV 13 mV 6.5 mV
4-27.	Output Impedance T VSWR <2.0:1 Return Loss VSWR <1.3:1 Return Loss	est (Out of Band)	9.8 dB 9.8 dB 18.3 dB 18.3 dB		
4-28.	Auxiliary Output Te	st	—5 dBm		

Table 4-1.	Performance	Test Record	(4 of 8)
------------	-------------	-------------	----------

Ĩ

Para	T . D	4		Results			
No.	Test Description		Min	Actual	Max		
4-29.	Output Leakage Test						
	0.5 to 400 MHz				-97 dBm		
	400 to 600 MHz 600 to 1200 MHz				97 dBm 97 dBm		
4-30.	Internal Modulation Oscilla				100 TT		
	400 Hz Fixed: Freque Level (Sta		392 Hz 1.0 Vrms		408 Hz		
		otion 001)	3.0 Vrms				
	1 kHz Fixed: Freque	ency	980 Hz		$1020~\mathrm{Hz}$		
	Level (Sta Level (Or	otion 001)	1.0 Vrms 3.0 Vrms				
	Variable Frequency (C				±10%		
4-31.	Internal Modulation Oscilla Distortion	itor					
	Test (Option 001)						
	Variable: 20 Hz to 2 1 2 kHz to 60				$0.5\% \\ 1.0\%$		
	Fixed: 400 Hz				0.25%		
	1000 Hz				0.25%		
4-32.	AM 3 dB Bandwidth Test						
	RANGE %AM	Bandwidth					
	8-16 MHz 50%	0-60 kHz			3 dB 3 dB		
	90% 4-8 MHz 50%	0-50 kHz 0-30 kHz			3 dB		
	90%	0-25 kHz			3 dB		
	1-2 MHz 50% 90%	0-20 kHz 0-12.5 kHz			3 dB 3 dB		
	·····	0-12.0 R112					
4-33.	AM Distortion Test	F 0 07			1%		
		50% 70%			3%		
		90%			3%		
4-34.	AM Sensitivity and Accura	cy Test					
	External Sensitivity A		171.0 mVrms		189.0 mV		
	Indicated Accuracy:	90% 70%	165.6 mVrms 128.8 mVrms		194.4 mV 151.2 mV		
		50%	92.0 mVrms		108.0 mV		
		30% (0.10)	55.2 mVrms		64.8 mVrr 65.4 mVrr		
		30% (0-3) 20%	54.6 mVrms 36.4 mVrms		43.6 mVri		
		10%	18.2 mVrms		21.8 mVrr		

Table 4-1. Performance Test Record (5 of 8)

D			Results	
Para No.	Test Description	Min	Actual	Max
4-35.	Peak Incidental Phase Modulation Test			
	512 MHz 128 MHz		· · · · · · · · · · · · · · · · · · ·	±17.2° ±8.6°
4-36.	Pulse Modulation Test			
	0.5-1 MHz Rise Time Fall Time Level Accuracy 1-2 MHz Rise Time	5.4 div		9 μs 9 μs 6.7 div 4 μs
	Fall Time Level Accuracy 2-4 MHz Rise Time Fall Time	5.4 div		4 μs 6.7 div 2 μs 2 μs
	4-8 MHz Rise Time Fall Time	5.4 div		6.7 div 2 μs 2 μs
	Level Accuracy 8-16 MHz Rise Time Fall Time	5.4 div		6.7 div 1 μs 1 μs 6.7 div
	Level Accuracy 16-32 MHz Rise Time Fall Time Level Accuracy	5.4 div		$ \begin{array}{c} 1 \ \mu s \\ 1 \ \mu s \\ 6.7 \ \text{div} \end{array} $
	32-64 MHz Rise Time Fall Time Level Accuracy	5.4 div		1 μs 1 μs 6.7 div
	64-128 MHz Rise Time Fall Time Level Accuracy	5.4 div		1 μs 1 μs 6.7 div
	128-256 MHz Rise Time Fall Time Level Accuracy 256-512 MHz Rise Time	5.4 div		1 μs 1 μs 6.7 div 1 μs
	Fall Time Level Accuracy	5.4 div		1 μs 6.7 div
4-37.	Pulse ON/OFF Ratio Test			
	Frequency Range: 256-512 MHz 128-256 MHz 64-128 MHz 32-64 MHz 16-32 MHz	40 dB 40 dB 40 dB 40 dB 40 dB		
	8-16 MHz 4-8 MHz 2-4 MHz 1-2 MHz 0.5-1 MHz	40 dB 40 dB 40 dB 40 dB 40 dB 40 dB		

Table 4-1. Performance Test Record (6 of 8)

•

i.

			Results				
Para No.	Test Description	Min	Actual	Max			
4-38.	FM 3 dB Bandwidth Test		······································	3 dB			
4-39.	FM Distortion Test Maximum Deviation 1/8 Maximum Deviation	30.5 dB 40 dB					
4-40.	FM Sensitivity and Accuracy TestSensitivity:Frequency Range256-512 MHz128-256 MHz64-128 MHz32-64 MHz32-64 MHz16-32 MHz8-16 MHz4-8 MHz2-4 MHz1-2 MHz0.5-1 MHzAccuracy:Frequency Range256-512 MHz128-256 MHz64-128 MHz32-64 MHz16-32 MHz8-16 MHz4-8 MHz2-4 MHz16-32 MHz8-16 MHz4-8 MHz2-4 MHz1-2 MHz0.5-1 MHz	1.954 kHz 1.954 kHz 1.871 kHz		2.204 kHz 2.204 kHz 2.287 kHz			
4-41.	Incidental AM Test Maximum Deviation 1/8 Maximum Deviation			1% 0.5%			
4-42.	Counter External Sensitivity Test 0.5 to 550 MHz 20 Hz to 500 kHz 20 Hz to 10 MHz			(\checkmark) (\checkmark) (\checkmark)			
4-43.	Internal Reference Accuracy Test 15°C to 35°C 0°C to 55°C	4,999,995 Hz 4,999,985 Hz		5,000,005 5,000,015			

Table 4-1. Performance Test Record (7 of 8)

ê

Q

(

Dene			Results					
Para No.	Test Description	Min	Actual	Max				
4-44.	Internal Reference Drift Rate (Stability) Test							
	Time Voltage Temperature Load Level Change Mode Change			0.27 Hz 0.52 Hz 10.2 Hz (\checkmark) No Change (\checkmark) No Change (\checkmark) No Change				
4-45.	Phase Lock Restabilization Time Test After two hour warm-up After frequency change After band change After 1 min. in RF OFF mode			7 Hz 7 Hz 7 Hz 7 Hz 7 Hz				

.

Table 4-1. Performance Test Record (8 of 8)

-

•

Para. No.	Performance Test	Alteration	Remark
4-11.	Frequency Range Test	Check only 0.5 - 1 MHz Range.	Ranges obtained by binary division of 230 550 MHz RF oscillator. All dividers oper- ate on 0.5 - 1 MHz Range.
4-12.	Frequency Accuracy and Fine Tune Test	Omit steps 5 to 8.	Fine tune of secondary importance.
4-13.	Frequency Stability vs Time and Restabiliza- tion Time Test	Omit steps 5 to 7.	Restabilization time of secondary impor- tance.
4-14.	Frequency Stability vs Temperature Test	Omit test.	Drift is small in a normal lab environment.
4-15.	Frequency Stability vs Line Voltage Test	Omit test.	Frequency shifts are small in a normal lab environment.
4-16.	Frequency Stability vs Load, Level, and Mode Test	Omit test.	RF oscillator well buffered from external loading. FM offset null constant under normal lab environment.
4-17.	Harmonics Test	None	
4-18.	Sub-harmonics and Non- harmonic Spurious Test	Omit test.	No mechanism for generation of spurious signals except counter, which is heavily shielded and filtered.
4-19.	Single Sideband Phase Noise Test	None	
4-20.	Single Sideband Broad- band Noise Floor Test	None	
4-21.	Residual AM Test	Omit step 4.	Normally within specification for 300 Hz to 3 kHz bandwidth if within specification for 20 Hz to 20 kHz bandwidth.
4-22.	Residual FM Test	Omit steps 6 and 7.	Normally within specification for 300 Hz to 3 kHz bandwidth if within specification for 20 Hz to 20 kHz bandwidth.
4-23.	Output Level Accuracy Test (Abbreviated)	None	
4-24.	Output Level Accuracy Test (Complete)	Omit test.	Most useful ranges checked by abbreviated test.
4-25.	Output Level Flatness Test	None	
4-26.	Output Impedance Test (In Band)		A condition that is out of specification wi
4-27.	Output Impedance Test (Out of Band)	Omit one test.	usually show on both tests.

Table 4-2. Recommended Test Abridgements (1 of 3)

.

6

i I T

Performance Test	Alteration	Remark	
Auxiliary Output Test	Omit test.	Auxiliary output a secondary function.	
Output Leakage Test	Omit step 5, and use 400 MHz amplifier to check to 512 MHz in step 4.	The 400 MHz amplifier bandwidth is ade- quate to check leakage over the output range of 0.5 to 512 MHz.	
Internal Modulation Oscillator Test	Omit test.	Exactness of modulation frequency not critical for most applications.	
Internal Modulation Oscillator Distortion Test (Opt 001)	Omit test.	Excessive distortion will usually manifest itself in AM and FM distortion tests.	
AM 3 dB Bandwidth Test	Omit test.	Accuracy at most often used frequencies check in AM sensitivity test.	
AM Distortion Test	None		
AM Sensitivity and Accuracy Test	Omit step 8, but check meter in steps 1 to 7.	A spot check of meter accuracy is usually adequate.	
Peak Incidental Phase Modulation Test	Omit test.	Test requires access to inside of instrument. Specification does not normally degrade with time.	
Pulse Modulation Test	Omit steps 7 to 9.	Performance usually improves at the higher frequencies.	
Pulse On/Off Ratio Test	Omit step 4.	Performance usually improves at the lower frequencies.	
FM 3 dB Bandwidth Test	Omit test.	Accuracy at most often used frequencies checked in FM Sensitivity test.	
FM Distortion Test	None.		
FM Sensitivity and Accuracy Test	Omit steps 6 to 9, but check meter in steps 1 to 5.	A spot check of meter accuracy is usually adequate.	
Incidental AM Test	Omit test.	Incidental AM usually of secondary impor- tance and FM sensitivity test will usually show conditions that are out of specification (i.e., the first order sidebands will be uneven	
	Auxiliary Output TestOutput Leakage TestInternal Modulation Oscillator TestInternal Modulation Oscillator Distortion Test (Opt 001)AM 3 dB Bandwidth TestAM Distortion TestAM Sensitivity and Accuracy TestPeak Incidental Phase Modulation TestPulse Modulation TestPulse Modulation TestFM 3 dB Bandwidth TestFM 3 dB Bandwidth TestFM 3 dB Bandwidth TestFM 3 dB Bandwidth TestFM 2 dB Bandwidth TestFM 2 dB Bandwidth TestFM 3 dB Bandwidth TestFM Sensitivity and Accuracy Test	Auxiliary Output TestOmit test.Output Leakage TestOmit step 5, and use 400 MHz amplifier to check to 512 MHz in step 4.Internal Modulation Oscillator TestOmit test.Internal Modulation Oscillator Distortion Test (Opt 001)Omit test.AM 3 dB Bandwidth TestOmit test.AM Distortion TestNoneAM Sensitivity and Accuracy TestOmit step 8, but check meter in steps 1 to 7.Peak Incidental Phase Modulation TestOmit test.Pulse Modulation TestOmit steps 7 to 9.Pulse On/Off Ratio TestOmit step 4.FM 3 dB Bandwidth TestOmit test.FM Sensitivity and Accur acy TestOmit step 5 to 9, but check meter in steps 1 to 7.	

Table 4-2. Recommended Test Abridgements (2 of 3)

Para. No.	Performance Test	Alteration	Remark
4-42.	Counter External Sensi- tivity Test	Omit steps 3 and 4.	Performance usually improves at lower frequencies.
4-43.	Internal Reference Accuracy Test	None	
4-44.	Internal Reference Drift Rate (Stability) Test	Omit test.	Drift is small in a normal lab environment.
4-45.	Phase Lock Restabiliza- tion Time Test	Omit test.	Frequency error during the short lock acquisition time usually not significant.

Table 4-2. Recommended Test Abridgements (3 of 3)

· ·

SECTION V ADJUSTMENTS

5-1. INTRODUCTION

5-2. This section describes adjustments required to return the Model 8640B Signal Generator to peak operating condition when repairs are required. Included in this section are test setups, and check and adjustment procedures. Removal and replacement procedures are given on the alphabetic service sheets (after the schematics in Section VIII). Adjustment location photographs are given on the last foldout in Section VIII.

5-3. SAFETY CONSIDERATIONS

5-4. Although this instrument has been designed in accordance with international safety standards, this manual contains information and warnings which must be followed to ensure safe operation and to retain the instrument in a safe condition (see Sections II and III). Service and adjustments should be performed only by qualified service personnel.

WARNING

Any interruption of the protective (grounding) conductor inside or outside the instrument or disconnection of the protective earth terminal is likely to make the apparatus dangerous. Intentional interruption is prohibited.

5-5. Any adjustment, maintenance, and repair of the opened instrument under voltage should be avoided as much as possible and, when inevitable, should be carried out only by a skilled person who is aware of the hazard involved. The opening of covers or removal of parts, except those to which access can be gained by hand, may expose live parts, and also accessible terminals may be live.

5-6. Capacitors inside the instrument may still be charged even if the instrument has been disconnected from its source of supply.

5-7. Make sure that only fuses with the required rated current and of the specified type (normal blow, time delay, etc.) are used for replacement.

The use of repaired fuses and the short-circuiting of fuseholders must be avoided.

5-8. Whenever it is likely that the protection has been imparied, the instrument must be made inoperative and be secured against any unintended operation.

5-9. TEST EQUIPMENT REQUIRED

5-10. Tables 1-2 and 1-3 contain a list of test equipment and test accessories required in the adjustment procedures. In addition, the tables contain the required minimum specifications and a suggested manufacturer's model number.

5-11. Posidriv Screwdrivers

5-12. Many screws in the instrument appear to be Phillips, but are not. To avoid damage to the screw slots, Posidriv screwdrivers should be used.

5-13. Blade Tuning Tools

5-14. For adjustments requiring a non-metallic metal-blade tuning tool, use the J.F.D. Model No. 5284 (HP 8710-1010). In situations not requiring non-metallic tuning tools, an ordinary small screw-driver or other suitable tool is sufficient. No matter what tool is used, never try to force any adjustment control in the generator. This is especially critical when tuning variable slug-tuned inductors, and variable capacitors.

5-15. Service Aids

5-16. Spare Parts Kit. The HP 08640-60095 Spare Parts Kit contains miscellaneous mechanical spare parts for the generator - such things as nuts, bolts, screws and washers.

5-17. Extender Board. An extender board is supplied with the generator that can be used to extend all circuit plug-in boards (except the A10A2 RF Divider Assembly and the A12 Rectifier Assembly). The RF Divider Assembly is self-extending - just remove the riser board and insert the Divider Assembly into the riser's socket.

5-18. Wrench. A wrench is supplied with the generator. One end fits the SMC connectors used on the generator's RF cables, the other end fits another common size SMC connector which may be used in servicing the instrument.

5-19. FACTORY SELECTED COMPONENTS

5-20. Table 5-1 contains a list of factory selected components by reference designation, basis of selection, and schematic diagram location. Factory selected components are designated by an asterisk (*) on the schematic diagrams in Section VIII.

5-21. The following information supplements Table 5-1.

a. **A8A1R4 Selection.** If A8A1U5 has been replaced and counter external sensitivity is not within specification, select A8A1R4 as follows:

- 1. Set COUNTER MODE to EXT 0 10 or EXT 0 550.
- 2. Measure dc voltage at A8A1U5 pins 1 and 14.
- 3. Select a value of resistance that will bring dc voltage at pin 14 to within 10% of voltage at pin 1.

b. A10A2R6-8, R12-14, and R18-20 Selection. If A26U2 (Service Sheet 12) has been replaced, check second harmonic level (at RF output jack) on the following bands: 128 -256 MHz, 64 - 128 MHz, and 32 - 64 MHz. If second harmonic level is out of specification, increase affected band's divider output attenuation until second harmonic level is within specification. The following table indicates correct values of resistance for 3 to 6 dB of attenuation (change attenuation in 1 dB steps).

Band (RANGE)	Resis	stors (A10	A2)
128 - 256 MHz	R7	R6	R8
64 - 128 MHz	R13	R12	R14
32 - 64 MHz	R19	R18	R20
Attenuation		Resistance	
3 dB	17.8Ω	287Ω	287Ω
4 dB	23.7 Ω	237Ω	237Ω
5 dB	31.6 Ω	178Ω	178Ω
6 dB	38.3 Ω	147Ω	147Ω

c. To change attenuation, change all three resistors associated with the band that's out of specification. For example, if 64 - 128 MHz band second harmonic is too high, then R13, R12, and R14 will have to be changed. Change attenuation in 1 dB steps (e.g., to change their attenuation to 5 dB, change R13 to 31.6Ω , R12 to 178Ω , and R14 to 178Ω .)

NOTE

Attenuation should be no higher than necessary to bring a band's second harmonic within specification. Excessive attenuation may reduce maximum RF output level below +19 dBm.

d. A26A3C3, C4, C5 and C6 Selection. Capacitors may or may not be used; their values are always 0.22 pF. Select as follows:

- 1. Set AM switch to PULSE, FREQUENCY RANGE to 256 - 512 MHz, and RF ON/OFF to ON.
- 2. Connect a spectrum analyzer to MOD OUTPUT JACK, A26A3J1.
- 3. Check from 256 to 512 MHz (tune FRL QUENCY TUNE across band). Signals should always be below -58 dBm.

4. Add or remove capacitors across diodes as necessary to keep signals below -58 dBm.

Table 5-1. Factory Selected Components† (1 of 2)

Component	Service Sheet	Range of Values	Basis of Selection
A8A1R4	18	2-5 kΩ	See paragraph 5-21. Select for an indica- tion on counter with 100 mVrms applied to COUNTER IN- PUT.
A10A2R6-8, R12-14, and R18-20	11		See paragraph 5-21.

+ See backdating, Tables 7-1 and 7-2.

1

Component	Service Sheet	Range of Values	Basis of Selection
A11R28 (Option 001)	9A	215 to 316 ohms	See paragraph 5-27. Select for less than specified distortion with distortion analyzer connected to front panel output jack. (Dis- tortion should not be so low that amplitude stability is poor at 20 Hz.)
A26A3C3, C4, C5, C6	12	0.22 pF	See paragraph 5-21.

Table 5-1. Factory Selected Components†(2 of 2)

† See backdating, Tables 7-1 and 7-2.

5-22. POST-REPAIR TEST AND ADJUSTMENTS

5-23. The adjustments in this section should be performed when the troubleshooting information

in Section VIII indicates that an adjustable circuit is not operating correctly. Perform the adjustments *after* repairing or replacing the circuit. The required adjustments are specified in Table 5-2. Allow the instrument to warmup one hour before making any adjustment.

5-24. After making the adjustments, perform the performance tests (found in Section IV) specified in the table. In general, if any casting was opened (or any RF connectors removed) during a repair, the Output Leakage Test should be performed. Performance tests should also be made for any assembly that had a component changed, even if the changed component was not defective. The power supplies should be checked whenever an assembly has been repaired.

NOTE

Table 5-2 can also be used for troubleshooting. If the generator failed one or more performance tests, cross-referencing to the associated assembly or circuitry will often indicate the source of the failure.

â

Assembly Repaired	Performance Tests	Adjustments
A1 Output Level Assy	 Harmonics Test (4-17) Output Level Accuracy Test (4-23 or 4-24) Output Level Flatness Test (4-25) Output Impedance Tests (4-26 and 4-27) Output Leakage Test (4-29) 	 Check power supply voltages (5-25) Output Level Knob Adjust- ment (5-30) Output Level Vernier and Meter Adjustment (5-31)
A2 Meter Switch/Detector Assy A4 Meter/Annunciator Drive Assy Panel Meter M1	Output Level Accuracy Test (upper 2 ranges only) (4-24 or 4-25) AM Sensitivity and Accuracy Test (meter only) (4-34) FM Sensitivity and Accuracy Test (meter only) (4-40)	Check power supply voltages (5-25) Meter Adjustments (5-28)
A3 RF Oscillator Assy	 Frequency Range Test (256-512 MHz only) (4-11) Frequency Accuracy and Fine Tune Test (fine tune only) (4-12) Frequency Stability Tests (4-13, 4-14, 4-15, and 4-16) Harmonics Test (4-17) Single Sideband Phase Noise Test (4-19) Residual FM Test (4-22) Output Level Flatness Test (256-512 MHz only) (4-25) Output Leakage Test (4-29) FM Distortion Test (4-39) FM Sensitivity and Accuracy Test (4-40) Phase Lock Restabilization Time Test (check only that phase lock operates) (4-45) 	Check power supply voltages (5-25) V _T Pot Adjustment (5-35) V _T Voltage Adjustment (5-36) Preliminary FM Adjustments (if necessary) (5-38) FM Linearity Adjustment (if necessary) (5-39) FM Sensitivity Adjustment (if necessary) (5-40)

Table 5-2. Post-Repair Test and Adjustments (1 of 4)

Assembly Repaired	Performance Tests	Adjustments
A5 FM Amplifier Assy A7 FM Shaping Assy	FM 3 dB Bandwidth Test (4-38) FM Distortion Test (4-39) FM Sensitivity and Accuracy Test (omit meter check) (4-40)	 Check power supply voltages (5-25) Preliminary FM Adjustments (5-38) FM Linearity Adjustment (5-39) FM Sensitivity Adjustment (5-40)
A6 Annunciator Assy	None	None
A8 Counter/Lock Assy	 Operator's Checks (Figure 3-4) Frequency Accuracy and Fine Tune Test (accuracy only) (4-12) Frequency Stability Tests (4-13, 4-14, 4-15, and 4-16) Sub-Harmonics and Non- Harmonic Spurious Test (4-18) Output Leakage Test (4-29) Counter External Sensitivity Test (4-42) Internal Reference Accuracy Test (4-43) Internal Reference Drift Rate (Stability) Test (4-44) Phase Lock Restabilization Time Test (4-45) 	Check power supply voltages (5-25) Internal Reference Frequency Adjustment (if necessary) (5-41)
A9 Peak Deviation and Range Switch Assy	Operator's Checks (Figure 3-4) FM Sensitivity and Accuracy Test (4-40)	Check power supply voltages (5-25) Peak Deviation and Range Switch Adjustment (if necessary) (5-33) Range Switch Adjustment (5-34) Preliminary FM Adjustments (if necessary) (5-38) FM Linearity Adjustment (if necessary) (5-39)

Table 5-2. Post-Repair Tests and Adjustments (2 of 4)

(

.

Assembly Repaired	Performance Tests	Adjustments
A9 Peak Deviation and Range Switch Assy (Cont'd)		FM Sensitivity Adjustment (if necessary) (5-40)
A10 Divider/Filter Assy	Frequency Range Test (4-11) Harmonics Test (4-17) Output Level Flatness Test (4-25) Output Leakage Test (4-29)	Check power supply voltages (5-25) Range Switch Adjustment (if necessary) (5-34) V _T Voltage Adjustment (5-36) RF Filter Adjustment (if necessary) (5-37)
A11 Fixed-Frequency Modulation Oscillator Assy or A11 Variable-Frequency Modulation Oscillator Assy (Option 001)	Internal Modulation Oscillator Test (4-30) Internal Modulation Oscillator Distortion Test (Option 001 only) (4-31)	Check power supply voltages (5-25) Fixed Frequency Modulation Oscillator Adjustment (5-26) or Variable-Frequency Modulation Oscillator Adjustment (5-27)
A12 Rectifier Assy A13 Modulation/Metering Mother Board Assy A14 Line Power Module A15 Riser Assy A17 Power Supply Mother Board Assy A20 +5.2V and +44.6V Regulator Assy A22 +20V and -20V Regulator Assy A24 Series Regulator Socket Assy	Frequency Stability vs Time Test (4-13) Frequency Stability vs Line Voltage Test (4-15) Residual FM Test (4-22) Internal Reference Drift Rate (Stability) Test (4-44)	Power Supply Adjustments (5-25)
A16 Fan Motor Assy A18 –5.2V Regulator and Fan Driver Assy	Residual FM Test (4-22)	Power Supply Adjustments (5-25)

Table 5-2. Post-Repair Tests and Adjustments (3 of 4)

1 300

Assembly Repaired	Performance Tests	Adjustments
A26 AM/AGC and RF Amplifier	Harmonics Test (4-17)	Check power supply voltages
Assy	Residual AM Test (4-21)	(5-25)
	Output Level Accuracy Test (4-23 or 4-24)	RF Detector Offset Adjust- ment (5-29)
	Output Level Flatness Test (4-25)	Output Level Vernier and Meter Adjustment (5-31)
	Output Impedance Test (4-26 and 4-27)	AM Sensitivity Adjustment (5-32)
	Auxiliary Output Test (4-28)	
	Output Leakage Test (4-29)	
	AM 3 dB Bandwidth Test (4-32)	
	AM Distortion Test (4-33)	
	AM Sensitivity and Accuracy Test (4-34)	
	Peak Incidental Phase Modulation Test (4-35)	
	Pulse Modulation Test (4-36)	
	Pulse On/Off Ratio Test (4-37)	
	Incidental AM Test (4-41)	
	·	

Table 5-2. Post-Repair Tests and Adjustments (4 of 4)

5-25. POWER SUPPLY ADJUSTMENTS

REFERENCE:

Service Sheets 22 and 23.

DESCRIPTION:

A digital voltmeter is used to check the power supply voltages. They are then adjusted for the correct voltage. This procedure should be performed before making any other adjustment.

EQUIPMENT:

PROCEDURE:

- 1. Set LINE switch to ON. The fan should run and five LED's located on power supply boards (A18, A20, and A22) should be lit.
- 2. Connect DVM to each of the test points listed below. The voltages should be within the tolerances shown; if not, adjust appropriate resistor for a reading within the indicated tolerances.

Test Point	Adjust	Voltage Level
-5.2V A18TP5 +5.2V A20TP10	A18R2 A20R16	$-5.200V \pm 10 \text{ mV}$ * +5.200V ± 10 mV
+20V A22TP4	A22R7	+20.000V ±10 mV **
-20V A22TP9 +44.6V A20TP4	A22R19 A20R8	

* For ambient temperatures other than 25° C, modify the voltage level setting by --4.2 mV/°C.

** Perform FM CAL adjustment (paragraph 5-38, step 5) and time base adjustment (paragraph 5-41).

*** Perform VARACTOR BIAS adjustment (paragraph 5-38, step 12).

5-26. FIXED-FREQUENCY MODULATION OSCILLATOR ADJUSTMENT

REFERENCE:

Service Sheet 9.

DESCRIPTION:

A digital voltmeter is used to monitor the audio oscillator's output while setting its level. The AUDIO OUTPUT LEVEL dial is also adjusted.

5-26. FIXED-FREQUENCY MODULATION OSCILLATOR ADJUSTMENT (Cont'd)

EQUIPMENT:

PROCEDURE:

1. Connect DVM, through 600 ohm feedthrough, to AM OUTPUT. Set Signal Generator's controls as follows:

AM	
MODULATION FREQUENCY	00 Hz
FM	. OFF
AUDIO OUTPUT LEVEL	'ull cw

- 2. Adjust OSC LEVEL adjustment, A11R6, for a 1.00 ± 0.01 Vrms reading on DVM.
- 3. Set AUDIO OUTPUT LEVEL to 100 mVrms as read on DVM. The AUDIO OUTPUT LEVEL dial should read 100 mVrms. If it does not, loosen setscrews on knob and align knob so that it does.
- 4. Set MODULATION FREQUENCY to 400 Hz. Set AUDIO OUTPUT LEVEL fully cw. The DVM should read within 2% of 1 Vrms.

0.98_____1.02 Vrms

5-27. VARIABLE-FREQUENCY MODULATION OSCILLATOR ADJUSTMENT (OPTION 001)

REFERENCE:

Service Sheet 9A.

DESCRIPTION:

A digital voltmeter and a frequency counter are used to monitor output voltage and frequency while adjusting the oscillator. The MODULATION FREQUENCY dial and the AUDIO OUTPUT LEVEL dial are adjusted.

EQUIPMENT:

Digital Voltmeter .								•				•						Η	P	3480B/3484A
Frequency Counter						•	•	•	•											HP 5327C
600 Ohm Feedthroug	h		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•	. HP 11095A

5-27. VARIABLE-FREQUENCY MODULATION OSCILLATOR ADJUSTMENT (OPTION 001) (Cont'd)

PROCEDURE:

- 1. Check that modulation oscillator is installed with all of its covers in place.
- 2. If the knobs have been removed, turn MODULATION FREQUENCY vernier shaft full cw. Install frequency dial on vernier shaft so that the gears mesh and number 200 on the dial is 10 to 20° to the left (ccw) of the cursor. Turn MODULATION FREUQENCY switch shaft full ccw and install range knob on switch shaft so that 400 Hz FIXED FREQUENCY position is at the cursor (top). Install vernier knob. (The knobs should not touch each other.)
- 3. Turn trim capacitors A11C2 and C3 full cw.

NOTE

Turning C2 ccw decreases the output voltage while raising the frequency. Turning C3 ccw increases the output voltage while raising the frequency.

4. Set Signal Generator's controls as follows:

AM		
MODULATION FREQUENCY Switch	X100	
MODULATION FREQUENCY Vernier	Full ccw	
FM		
AUDIO OUTPUT LEVEL		

5. Connect DVM to OSC OUT test point, A11TP4. The DVM should read 1.6 ± 0.3 Vrms.

1.3_____1.9 Vrms

6. Connect frequency counter to AM OUTPUT jack. The counter should read 1.8 ± 0.2 kHz.

1.6_____2.0 kHz

- 7. Set MODULATION FREQUENCY vernier full cw and adjust trim capacitors, A11C2 and C3, until voltage level at A11TP4 is within 0.1 Vrms of level read in step 5 and frequency at AM OUTPUT is 21 ± 1 kHz.
- 8. Set MODULATION FREQUENCY vernier for a frequency counter reading of 2.0 ± 0.01 kHz. Loosen setscrews in gear that meshes with frequency dial gear (vernier). Rotate dial gear so that dial reads 20 (at the cursor) and tighten setscrews in gear. The frequency counter should read 2.0 ± 0.01 kHz when dial reads 20 at the cursor. Record voltage level at A11TP4.

____Vrms

- 7

A

9. Set MODULATION FREQUENCY vernier to 200. Adjust A11C2 and C3 until voltage level at A11TP4 is within 0.01 Vrms of level recorded in step 8 and frequency is 20.0 ± 0.1 kHz.

5-27. VARIABLE-FREQUENCY MODULATION OSCILLATOR ADJUSTMENT (OPTION 001) (Cont'd)

- 10. Set MODULATION FREQUENCY vernier to 20. The counter should read 2.00 ± 0.01 kHz and voltage level at A11TP4 should be within 0.01 Vrms of level recorded in step 8. Repeat steps 8 and 9 until voltage level and frequency are correct.
- 11. Monitor voltage at A11TP4 while using MODULATION FREQUENCY switch and vernier to tune oscillator from 2 kHz to 20 kHz. The voltage level at 2 kHz (on the X100 range) should be 1.6 ± 0.05 Vrms and level at all other frequencies should be within 0.03 Vrms of level at 2 kHz.

At 2 kHz: 1.55 _____ 1.65 Vrms

All frequencies: _____ ±0.03 Vrms

- 12. If level at A11TP4 is too high, reduce A11R28 by one standard value (10%); if level is too low, increase A11R28 by one standard value. Then repeat steps 8 through 11.
- 13. Set MODULATION FREQUENCY range switch to X3 K and vernier to 200 and adjust HIGH FREQ capacitor A11C9 for a counter reading of 600 ± 3 kHz.

597_____603 kHz

†14. Connect DVM to AM OUT test point, A11TP5. Set MODULATION FREQUENCY range switch to X100 and the vernier to 20. Adjust AM-FM adjustment, A11R35, for 840 ± 10 mVrms at A11TP5.

830 _____ 850 mVrms

15. Connect DVM to the FM OUT test point, A11TP3. It should read within 5 mVrms of reading in step 14.

_____±5 mVrms

16. Use MODULATION FREQUENCY range switch and vernier to tune oscillator across each range (except 400 and 1000 Hz FIXED FREQ). Monitor voltage level at A11TP3; the DVM should read within 10 mVrms of level noted at 20 on vernier dial from 200 Hz to 100 kHz. It should read within 20 mVrms of level noted at 20 on vernier dial from 20 Hz to 600 kHz.

200 Hz to 100 kHz: ______ ±10 mVrms

20 Hz to 600 kHz:_____±20 mVrms

17. Set MODULATION FREQUENCY range switch to X3 K and vernier to 20. Connect DVM to AM OUTPUT jack through 600 ohm feedthrough. Adjust AUDIO LEVEL adjustment, A11R40, for 3.00 ± 0.03 Vrms at the jack.

2.97 ______ 3.03 Vrms

- 18. Set AM to OFF and FM to INT. Connect DVM to FM OUTPUT jack through the 600 ohm feedthrough. The DVM should read 3.0 ± 0.06 Vrms.
- 19. Check that AUDIO OUTPUT LEVEL control indicates 3V when turned fully cw. If it does not, loosen its setscrews and adjust it so that it does; then tighten setscrews.

† See Tables 7-1 and 7-2 for backdating.

))

5-28. METER ADJUSTMENTS

REFERENCE:

Service Sheet 17.

DESCRIPTION:

The panel meter is mechanically zeroed. The meter circuitry is then adjusted at zero and full scale.

EQUIPMENT:

PROCEDURE:

- 1. With LINE switch set to OFF, place Signal Generator in its normal operating position (e.g., if its normal operating position is tilted up with the tilt stand locked down, place it that way).
- 2. Adjust mechanical zero adjustment screw on panel meter clockwise for a zero meter reading. Then turn screw slightly counterclockwise to free mechanism from adjusting peg.
- 3. Set generator's controls as follows:

N	leter F	unc	ctio	n		• ·					•																		•		•			FM	
ł	M.			•						•		•											•	•	•			•	•	•	•		C)FF	
	10DU																																		
E	EAK I)E	/IA	TI	ON				•	•	•			•		•		•		•	•		•	•	•	•	•	•		•	•	1	0]	kHz	
E	EAK I	DEV	/IA	TI	ON	V	em	ier	:	•	•	•			•	•	•	•	•				•	•	•	•	•	•		•	•	Fu	11	ccw	
ł	RANGI	£		•	• •			•	•	•'	•			•	•		•	•	•		•	•		•	•	•		•	•		2	: - 4	l N	IHz	
1	INE	•	•••	•	• •	•	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	• •		ON	

- 4. Connect DVM to DC OUT test point (A2TP2) on A2 Meter Switch/Detector Assembly. Adjust DET OFFSET pot (A2R5) for 0 Vdc ± 1 mVdc at A2TP2.
- 5. Connect DVM to MTR ADJ test point (A4TP1) on A4 Meter Annunciator Drive Assembly. Adjust DRIVER OFFSET pot (A4R10) for 0 Vdc ± 1 mVdc at A4TP1.
- 6. Set FM to INT. Adjust PEAK DEVIATION vernier clockwise until DVM reads 9.766 Vdc at A4TP1. Then adjust F.S. METER pot (A4R19) for a full scale reading (10 on the 0-10 scale) on the panel meter.

5-29. RF DETECTOR OFFSET ADJUSTMENT

REFERENCE:

Service Sheets 12 and 13.

5-29. RF DETECTOR OFFSET ADJUSTMENT (Cont'd)

DESCRIPTION:

A digital voltmeter is used to set the proper offset voltage out of the RF detector.

EQUIPMENT:

PROCEDURE:

1. Connect DVM to DET test point, A26A1TP2, and set Signal Generator's controls as follows:

COUNTER MODE:	EXPAND)	•	•				•														. Off
	LOCK		•		•	•							•									. Off
	Source												•									. INT
AM																						. OFF
FM																				•		. OFF
RANGE																						
FREQUENCY TUN																						
RF ON/OFF		•••	٠	•	•	•	 •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	OFF

- 2. Set AGC Switch, A26A4S1, to off. Adjust AM offset pot, A26A1R11, for -61 ± 2 mVdc at DET test point.
- 3. Set AGC switch to on and set front panel RF ON/OFF switch to ON.
- 4. Perform Output Level Vernier and Meter Adjustment, paragraph 5-31.

5-30. OUTPUT LEVEL KNOB ADJUSTMENT

REFERENCE:

Service Sheets 13 and 16.

DESCRIPTION:

The RF attenuator knob is set, and the vernier voltage is monitored with a digital voltmeter and the vernier pot is adjusted. Then the vernier cursor is set. This procedure should be performed whenver the OUTPUT LEVEL knobs have been removed.

EQUIPMENT:

5-30. OUTPUT LEVEL KNOB ADJUSTMENT (Cont'd)

PROCEDURE:

1. Set Signal Generator's controls as follows:

Meter Function .		• •	 	 	LEVEL
COUNTER MODE:	EXPAND		 	 	Off
	LOCK .		 	 	Off
	Source .		 	 	INT
AM			 	 	OFF
FM			 	 	OFF
RANGE			 	 	32 - 64 MHz
FREQUENCY TUN	Е		 	 	50 MHz
OUTPUT LEVEL					
RF ON/OFF					

- 2. Set OUTPUT LEVEL RF attenuator knob one position ccw from full cw so that +13 dBm is in line with top edge of white cursor range on front panel. If it does not line up, loosen knob's setscrews and align it. (The attenuator and vernier knobs should not touch each other.)
- 3. Loosen setscrew in brass gear at rear of A1 Output Level Assembly.
- 4. Set OUTPUT LEVEL vernier full cw. Using DVM, note voltage at VERN test point, A1A1TP1, on A1A1 RF Vernier Assembly. It should be approximately 2 volts.
- 5. Adjust OUTPUT LEVEL vernier for half the voltage (at the VERN test point) noted in step 4 ± 20 mV.
- 6. Without moving vernier, turn brass gear shaft until cursor points to +7.5 dBm on dial. Tighten setscrew in brass gear.
- 7. Perform the Output Level Vernier and Meter Adjustment, paragraph 5-31.

5-31. OUTPUT LEVEL VERNIER AND METER ADJUSTMENT

REFERENCE:

Service Sheets 12 and 16.

DESCRIPTION:

The RF level accuracy for the upper OUTPUT LEVEL attenuator ranges is measured with a power meter and the generator's output level and panel meter are adjusted at +13 dBm. For the lower ranges, a reference signal is established on a spectrum analyzer display, the Signal Generator's OUTPUT LEVEL switch and the spectrum analyzer's vertical scale log reference level control are stepped together, and any amplitude variations at -67 and -97 dBm are measured on the analyzer's display. An RF attenuator and amplifier at the RF OUTPUT are adjusted for analyzer compatibility and best sensitivity.

5-31. OUTPUT LEVEL VERNIER AND METER ADJUSTMENT (Cont'd)

This procedure uses an IF substitution technique in which the spectrum analyzer's IF is the standard. The IF step accuracy should be within ± 0.2 dB overall. The IF step accuracy can be checked using the above technique by comparing a lab calibrated attenuator (such as HP Model 355D Option H36) with the IF step control at the frequency of attenuator calibration (e.g., 3 MHz for the HP 355D Option H36).

NOTE

1. Check that the Output Level Knob Adjustment (5-30), the RF Detector Offset Adjustment (5-29), and the Meter Adjustments (5-28) are correct before performing this adjustment.

2. After making meter adjustments which are accessible only from the bottom of the instrument, check the adjustment with the instrument in its normal operating position.

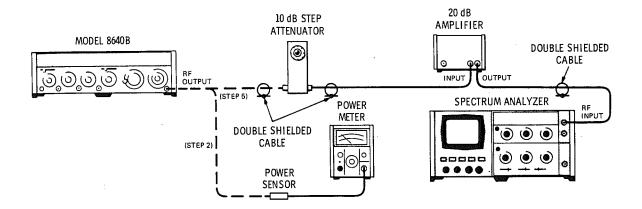


Figure 5-1. Output Level Vernier and Meter Adjustment Test Setup

EQUIPMENT:

Spectrum Analyzer	HP 141T/8552B/8553B
Power Meter	HP 435A
Power Sensor	HP 8481A
20 dB Amplifier	
Double Shielded Cable (3 required)	

NOTE

An HP Model 432A Power Meter with a Model 478A Thermistor Mount can be used for this test. However, a 10 dB attenuator, such as the Model 8491A OPT 10, must be used with the mount. This will slightly degrade measurement accuracy.

Ū

5-31. OUTPUT LEVEL VERNIER AND METER ADJUSTMENT (Cont'd)

PROCEDURE:

1. Connect equipment as shown in Figure 5-1 after setting Signal Generator's controls as follows:

Meter Function	LEVEL
COUNTER MODE: EXPAND	Off
LOCK	Off
Source	INT
AM	OFF
FM	OFF
RANGE	
FREQUENCY TUNE	50 MHz
OUTPUT LEVEL	As specified
RF ON/OFF	ON

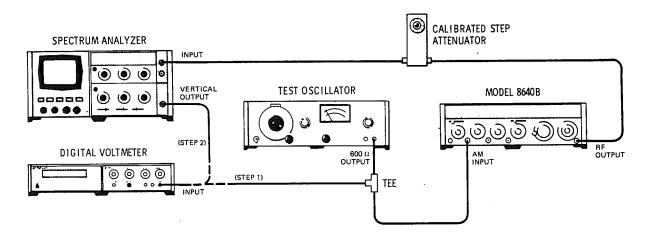
- 2. Set OUTPUT LEVEL switch one step ccw from full cw; turn OUTPUT LEVEL vernier until the cursor lines up with the top edge of the white cursor range (i.e., for +13 dBm read on OUTPUT LEVEL switch cursor).
- 3. Adjust LVL adjustment, A26A4R1, for a +13 dBm reading on power meter. Adjust MET adjustment, A26A4R12, for a +13 dBm indication on generator's panel meter (+3 dB reading on meter).
- 4. Set OUTPUT LEVEL switch three steps ccw to -17 dBm. Adjust vernier for a -17 dBm reading on power meter.
- 5. Disconnect power meter from generator and connect step attenuator, amplifier, and spectrum analyzer to RF OUTPUT.
- 6. Set step attenuator to 30 dB. Set spectrum analyzer's center frequency controls to 50 MHz (stabilizer on), resolution bandwidth to 10 kHz, frequency span per division (scan width to 5 kHz, input attenuation to 0 dB), display smoothing (video filter) to 100 Hz, and log/linear display switch to 2 dB log. Set the reference level switch for a -10 dBm reference level at the top graticule line on the display; adjust the reference level vernier to place the signal to the display's fifth horizontal graticule line.
- 7. Set generator's OUTPUT LEVEL switch to -47 dBm (i.e., 3 steps ccw). Set analyzer's reference level switch to -40 dBm and note signal level on display (i.e., the difference between the signal level and the fifth horizontal graticule line).
- 8. Set step attenuator to 0 dB; reset analyzer's reference level switch to -10 dBm and adjust analyzer's reference level vernier for the same signal level noted in step 7.
- 9. Set generator's OUTPUT LEVEL switch to -67 dBm; set analyzer's reference level switch to -30 dBm and adjust generator's OUTPUT LEVEL vernier to set signal on analyzer's display to the fifth horizontal graticule line (to the same place it was set in step 6).
- 10. Adjust the 10 μ V adjustment, A1A1R5, for a -67 dBm indication on generator's panel meter (+3 dB reading on meter).

5-31. OUTPUT LEVEL VERNIER AND METER ADJUSTMENT (Cont'd)

- 11. Set generator's OUTPUT LEVEL switch to -97 dBm. Set analyzer's reference level control to -60 dBm. Adjust OUTPUT LEVEL vernier to set signal on analyzer's display to the fifth horizontal graticule line (to the same place it was set in step 6). Adjust the $1 \mu V$ adjustment, A1A1R6, for a -97 dBm indication on generator's panel meter (+3 dB reading on meter).
- 12. Perform AM Sensitivity Adjustment, paragraph 5-32, if repairs have been made to the A26 AM/AGC and RF Amplifier Assembly.

5-32. AM SENSITIVITY ADJUSTMENT

REFERENCE:


Service Sheet 14.

DESCRIPTION:

AM sensitivity is adjusted while comparing the actual amount of amplitude modulation to the level of the input modulating signal. A spectrum analyzer is used to measure the actual modulation. The analyzer is used with zero frequency span at the carrier frequency. A DVM is used to measure the ac and dc voltages at the analyzer's vertical output, and the dc value of the carrier is set to 282.8 mVdc; the rms value of the modulation is then a very accurate measure of AM percent (% AM is 1/2 the ac voltage in mVrms).

EQUIPMENT:

Spectrum Analyzer									•		•	H	P	141T/8552B/8554B
Digital Voltmeter		•		•	•	•		•	•	•	•	•	•	. HP 3480B/3484A
Test Oscillator	 •			•		•	•	•	•		•	•	•	\dots HP 652A
Calibrated Step Attenuator			•	•	•	•		•	•	•		•		HP 355D OPT H36

f

5-32. AM SENSITIVITY ADJUSTMENT (Cont'd)

PROCEDURE:

1. Connect equipment as shown in Figure 5-2 after setting Signal Generator's controls as follows:

Meter Function
COUNTER MODE: EXPAND Off
LOCK
Source
AMAC
MODULATION
FMOFF
RANGE
FREQUENCY TUNE
OUTPUT LEVEL
(switch 5 steps ccw from full cw, vernier full cw)
RF ON/OFF

- 2. Set test oscillator for a 1 kHz, 353.6 mVrms signal as read on DVM (50% AM). Disconnect DVM from test oscillator (leave oscillator connected to generator). Connect the DVM to spectrum analyzer's vertical output. Set calibrated step attenuator to 0 dB.
- 3. Set spectrum analyzer's resolution bandwidth to 300 kHz, input attenuation to 20 dB, frequency span per division (scan width) to 20 kHz (tuning stabilizer on), scale to linear, and adjust center frequency and scale reference level controls to center the 512 MHz signal on the display. Set frequency span per division to 0 Hz and display smoothing (video filter) to 10 kHz. Peak the trace on the display with center frequency controls; set trace to center of display with reference controls.

NOTE

Step 4 measures the analyzer's dc offset (V_{off}) and must be performed to ensure the accuracy of this test. However if V_{off} for the analyzer being used has recently been measured and noted, skip step 4 and go on to step 5 (and eliminate the calibrated step attenuator from the test setup).

- 4. Measure analyzer's dc offset (V_{off}) by performing steps "a" through "f".
 - a. Set generator's controls as follows:

Meter Function	LEVEL
AM	OFF
RANGE	- 4 MHz
FREQUENCY TUNE	. 3 MHz

- b. Set analyzer's center frequency controls to 3 MHz.
- c. Adjust analyzer's reference level controls for -500 mVdc indicated on DVM (V_{DET 1}).
- d. Set step attenuator to 20 dB. Note DVM reading ($V_{DET 2}$).

5-32. AM SENSITIVITY ADJUSTMENT (Cont'd)

e. Calculate Voff where

$$V_{off} = \frac{V_{DET 2} - \alpha V_{DET 1}}{1 - \alpha}$$

and $\alpha = V_{RF2}/V_{RF1}$ (i.e., $\alpha =$ attenuation; for 20 dB it is 0.1).

therefore

$$V_{\text{off}} = \frac{V_{\text{DET 2}} + 50 \,\text{mVdc}}{0.9}$$

- f. Reset step attenuator to 0 dB, Signal Generator as specified in step 1, and spectrum analyzer as specified in step 3.
- 5. To calibrate spectrum analyzer for percent of AM measurement, use analyzer's reference level controls to set $-282.8 \text{ mV} + \text{V}_{\text{off}}$ at vertical output (as measured on the DVM). For example, if V_{off} is +50.0 mV, then set -282.8 mV + (+50.0 mV) or -232.8 mV at vertical output. (Check that trace is peaked on analyzer display.)
- 6. Set DVM to measure mVrms (ac only). Adjust % AM adjustment, A26A2R19, for a DVM indication of 100 mVrms.

5-33. PEAK DEVIATION AND RANGE SWITCH ADJUSTMENT

REFERENCE:

Service Sheets 6, 7, and 8.

DESCRIPTION:

The switches are adjusted so that the FM gain switch (i.e., A9S3, the switch that is controlled by both the peak deviation and the frequency range switch) is correctly positioned. This procedure should be performed whenever the A9 assembly has been disassembled.

PROCEDURE:

1. Set RANGE and PEAK DEVIATION switches full cw. Loosen setscrews in the knobs and position RANGE switch knob so that 512-1024 MHz is under the cursor on front panel. Position PEAK DEVIATION switch knob so that 5.12 MHz is under the cursor on front panel. Tighten setscrews.

ſ

5-33. PEAK DEVIATION AND RANGE SWITCH ADJUSTMENT (Cont'd)

- 2. Loosen locking screw on gain switch (A9S3) shaft (see exploded view in Section VIII). Rotate shaft until rotor tang on the front of the front wafer (A9S3AF-3½) is centered under clip with 94 wire (white-yellow). Tighten locking screw.
- 3. Rotate RANGE and PEAK DEVIATION switches through all of their positions (one at a time). Check that tang is adequately centered under all of the clips when they are approached from either direction (there is some backlash). If not, readjust the shaft until it is.
- 4. Perform Range Switch Adjustment, paragraph 5-34.

5-34. RANGE SWITCH ADJUSTMENT

REFERENCE:

Service Sheet 10.

DESCRIPTION:

The frequency at RF OUTPUT is monitored with a frequency counter. The divider/filter cams are positioned so that the frequency at RF OUTPUT agrees with the frequency indicated on the generator' readout. The RANGE switch knob is then set to the correct range. This procedure should be performed, whenever the A9 assembly or the A10 assembly has been removed or replaced.

EQUIPMENT:

Frequency Counter		HP 5327C
-------------------	--	----------

PROCEDURE:

1. Connect frequency counter high frequency input to RF OUTPUT. Set Signal Generator's controls as follows:

COUNTER MODE: EXI	AND	Off
LOC	К	Off
Sou	ce	INT
AM		\ldots OFF
FM		OFF
RANGE		. Full ccw
FREQUENCY TUNE		. 0.5 MHz
OUTPUT LEVEL		+13 dBm
RF ON/OFF		ON

2. Monitor output frequency with frequency counter. Loosen shaft coupling between RANGE switch and divider/filter cams. Rotate cam side of shaft until frequency counter reading agrees with frequency indicated on generator's output frequency display (i.e., to approximately 500 kHz); tighten shaft coupling.

5-34. RANGE SWITCH ADJUSTMENT (Cont'd)

- 3. Loosen RANGE switch knob, position it so that it indicates that the range is 0.5 1 MHz, and tighten it.
- 4. Set RANGE switch to each of its other positions (from both directions). The frequency counter should display readings that agree approximately with generator's readout (the correct frequency counter reading for the EXT DOUBLER 512 1024 MHz position is approximately 256 MHz).

5-35. V_T POT (A3R1) ADJUSTMENT

REFERENCE:

Service Sheet 5.

DESCRIPTION:

The V_T pot is aligned so that it will not hit either end-stop as the FREQUENCY TUNE control is tuned through its full range. This adjustment should be performed whenever the pot has been replaced.

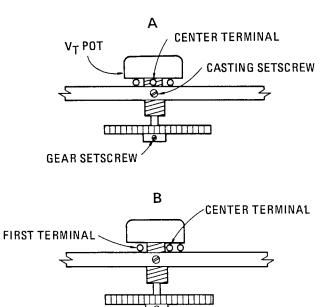


Figure 5-3. V_T Pot Adjustment

5-35. V_T POT (A3R1) ADJUSTMENT (Cont'd)

- 1. Set FREQUENCY TUNE full clockwise.
- 2. Tighten the bushing and set V_T pot shaft full cw.
- 3. Install pot with gear in casting so that center terminal (934 wire) is in line with casting setscrew (see Figure 5-3,A).
- 4. Tighten setscrews in gear (not casting setscrew).
- 5. Rotate the pot cw so that casting setscrew lies between first and center terminals of pot (see Figure 5-2,B).
- 6. Tighten casting setscrew.
- 7. Perform the V_T Voltage Adjustment, paragraph 5-36.

5-36. V_T VOLTAGE ADJUSTMENT

REFERENCE:

Service Sheets 5, 10, and 11.

DESCRIPTION:

This procedure should be performed whenever either the V_T pot, the A3 assembly, or the A10A2 assembly has been replaced.

PROCEDURE:

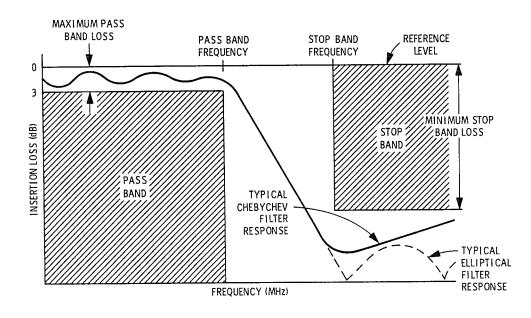
1. Set Signal Generator's controls as follows:

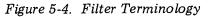
Meter Function			I	LEVEL
COUNTER MODE: 1	EXPAND			. Off
]	LOCK			. Off
S	Source			. INT
AM				. OFF
FM				. OFF
RANGE				2 MHz
FREQUENCY TUNE			\ldots As sp	pecified
FINE TUNE	• • • • • •		C	entered
OUTPUT LEVEL .				0 dBm
RF ON/OFF		•••••		. ON

5-36. V_T VOLTAGE ADJUSTMENT (Cont'd)

- 2. Set FREQUENCY TUNE to 356 MHz approached from low frequency band end (256 MHz); adjust V_T adjustment, A3A4R2 until the relays in the A10 assembly just actuate. When the relays actuate, they make an audible clicking.
- 3. Tune FREQUENCY TUNE one turn ccw and then cw until relays actuate. The frequency at actuation should be 355 357 MHz.
- 4. Tune FREQUENCY TUNE from 256 to 512 MHz. The generator's panel meter should read 0 dBm through the entire frequency range.

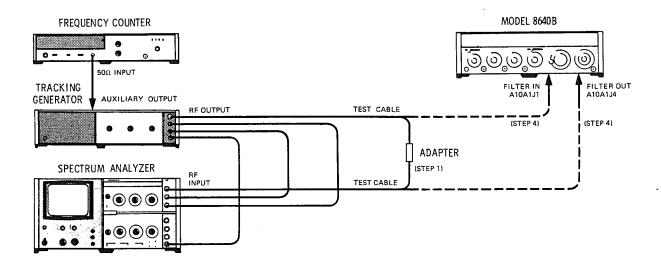
5-37. RF FILTER ADJUSTMENT

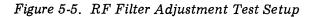

REFERENCE:


Service Sheet 10.

DESCRIPTION:

A spectrum analyzer and a tracking generator are used to measure the insertion loss and frequency response of each of the RF filters. Those filters that are adjustable are adjusted if necessary. A frequency counter, connected to the tracking generator's auxiliary output, is used to accurately set the analyzer's frequency. This procedure should be performed whenever the RF filters have been repaired or are suspect.


The filters must meet specified pass band and stop band characteristics. Figure 5-4 illustrates the terms used in the procedure.



l

5-37. RF FILTER ADJUSTMENT (Cont'd)

EQUIPMENT:

Spectrum Analyzer
Tracking Generator
Frequency Counter
Test Cable (2 required)
Adapter

PROCEDURE:

1. Connect equipment as shown in Figure 5-5 after setting Signal Generator's controls as follows:

RANGE		•			•	•	•	•		•	•											25	6	- 5	12 N	ИHz	j.
FREQUENCY TUNE																											
RF ON/OFF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		. (OFF	•

- 2. Set spectrum analyzer center frequency to 550 MHz, frequency span (scan width) to 100 MHz per division, resolution bandwidth to 10 kHz, and input attenuation to 20 dB.
- 3. Set tracking generator's output level to 0 dBm. Adjust the tracking for maximum response in a 10 kHz resolution bandwidth. (Tracking should be checked periodically during this test.) Set analyzer's resolution bandwidth to 300 kHz.

5-37. RF FILTER ADJUSTMENT (Cont'd)

- 4. For each of the frequency range bands listed in Table 5-3, perform the following:
 - a. Connect spectrum analyzer's RF input to tracking generator's RF output (use test cables and adapter as shown in test setup). Set Signal Generator's RANGE and FREQUENCY TUNE controls as listed in the table. Set spectrum analyzer's frequency span (scan width) controls to zero Hz.

NOTE

Geometric mean switching (on the 8 to 512 MHz bands) occurs near the middle of the frequency range. Switching is controlled by the position of the FREQUENCY TUNE control and switches between the high and low band filters for the frequency range. It can be noted either by listening for actuation of the RF relays or by observing a change in the spectrum analyzer's display when connected to the RF filters.

- b. Adjust analyzer's center frequency controls for a frequency counter indication of the pass band frequency listed in table. Adjust analyzer's vertical sensitivity controls to set trace to top (reference) graticule line on display (use 2 dB log per division); this sets the reference level for the filter check.
- c. Set analyzer's frequency span controls as listed in the table. Connect test cables to RF filter input and output as shown in the test setup. Check maximum loss at pass band frequency (center vertical graticule line) and below; it should be as specified.
- d. Set analyzer's frequency span controls to zero Hz. Adjust analyzer's center frequency controls for a frequency counter indication of the stop band frequency listed in the table. Then reset frequency span controls as listed in the table and set analyzer's display for 10 dB log per division.

NOTE

To measure the stop band frequency on the highest band it is necessary to set a frequency of 492 MHz at the second vertical graticule line to the left of center. This puts 692 MHz at the center (the counter will only read to 550 MHz).

- e. Check minimum loss at stop band frequency (center vertical graticule line) and above; it should be as specified.
- f. If necessary, on the 64 512 MHz bands, adjust the appropriate filter components to set pass band and stop band insertion loss within the specified limits. Use a non-metallic tuning tool.

NOTE

The 256 - 512 MHz high band is the most difficult to adjust and usually takes many iterations. Start with the adjustment capacitors oriented as in Figure 5-6. Stop band minimum loss should be >30 dB from 692 - 1000 MHz.

6

5-37. RF FILTER ADJUSTMENT (Cont'd)

Si	gnal Generator		Spectrum Analyzer	Pass	Band	Stop	Band	Adjust-
RANGE (Band)	FREQUENCY TUNE*	Filter*	Frequency Span Per Division	Frequency	Maximum Loss	Frequency	Minimum Loss	ment (A10A1)
256-512 MHz	Full cw	High	100 MHz	550 MHz	<3 dB	692 MHz	>30 dB	C81-84
	Full ccw	Low	50 MHz	356 MHz	<3 dB	460 MHz	>30 dB	L43-45
128-256 MHz	Full cw	High	50 MHz	275 MHz	<3 dB	346 MHz	>30 dB	L40-42
	Full ccw	Low	20 MHz	128 MHz	<3 dB	230 MHz	>30 dB	L37-39
64-128 MHz	Full cw	High	20 MHz	137 MHz	<3 dB	173 MHz	>30 dB	L31-33
	Full ccw	Low	10 MHz	89 MHz	<3 dB	115 MHz	>25 dB	None
32-64 MHz	Full cw	High	10 MHz	69 MHz	<3 dB	86.5 MHz	>25 dB	None
	Full ccw	Low	5 MHz	45 MHz	<3 dB	58 MHz	>25 dB	None
16-32 MHz	Full cw	High	5 MHz	34 MHz	<3 dB	43.2 MHz	>20 dB	None
	Full ccw	Low	2 MHz	22 MHz	<3 dB	28.7 MHz	>20 dB	None
8-16 MHz	Full cw	High	2 MHz	17.0 MHz	<3 dB	21.6 MHz	>15 dB	None
	Full ccw	Low	2 MHz	11.0 MHz	<3 dB	14.3 MHz	>15 dB	None
4-8 MHz	<u></u>		1 MHz	8.6 MHz	<3 dB	10.7 MHz	>38 dB	None
2-4 MHz			1 MHz	4.3 MHz	<3 dB	5.40 MHz	>40 dB	None
1-2 MHz			1 MHz	2.2 MHz	<3 dB	2.70 MHz	>30 dB	None
0.5-1 MHz			1 MHz	1.1 MHz	<3 dB	1.30 MHz	>30 dB	None

Table 5-3. RF Filter Check

* The 0.5 to 8 MHz bands have a single filter for each band. Geometric mean switching does not take place and the FREQUENCY TUNE control can be left at any position.

5-37. RF FILTER ADJUSTMENT (Cont'd)

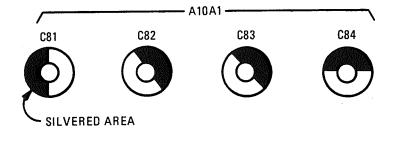


Figure 5-6. 256-512 MHz High Band Capacitor Adjustment Orientation

5-38. PRELIMINARY FM ADJUSTMENTS †

REFERENCE:

Service Sheets 6 and 7.

DESCRIPTION:

A digital voltmeter is used to correctly set the mechanical position of the FM compensation pot on the RF oscillator (this is necessary only if either the oscillator or the pot has been changed). Then the DVM is used to adjust the FM calibration voltage and the offset (balance) voltages in the FM amplifiers.

EQUIPMENT:

PROCEDURE:

1. Set Signal Generator's controls as follows:

Meter 1	Fur	nct	tic	m																							\mathbf{FM}
COUN	TE:	R	М	0	D]	E:]	EΧ	Υ	A	N]	D															\mathbf{Off}
]	LC	C	ĸ																	Off
							-	So	ur	ce	è																INT
AM																										•	OFF
\mathbf{FM}																											OFF
PEAK	DE	V	IA	Υ	IC	DN	Ţ												•	•				2	2.5	56	MHz

† See backdating, Tables 7-1 and 7-2.

ł

5-38. PRELIMINARY FM ADJUSTMENTS (Cont'd)

PEAK DEVIATION Vernier	_																•			•		•	\mathbf{F}	ull	l cw	V
RANGE	•	į	-																	25	6	- 5	512	2 N	<i>I</i> Η:	z
FREQUENCY TUNE	•	•	•	•	•												•						Fu	ll (сси	V
RF ON/OFF	•	•	•	•	•	•	•	·	•	·	•	•	·	·	·	-		_	_						ON	N
RFON/OFF		٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	-	•	-			

- 2. To set the compensation pot, A3R2, turn generator's LINE switch to OFF. Loosen setscrews in the gear on pot's shaft. Set DVM to measure ohms and connect it between 936 and 938 wires on the pot.
- 3. Without changing position of FREQUENCY TUNE knob, rotate compensation pot's shaft until DVM indicates between 0 and 9 ohms across the two wires.
- 4. Remove DVM, tighten setscrews, and set LINE to ON.
- 5. To adjust calibration voltage, set FM switch to CAL, set DVM to measure dc voltage, and connect DVM to FM BUFFER IN test point, A5TP5. Adjust FM CAL POT, A13R3, for 1.000 ± 0.001 Vdc at A5TP5.
- 6. To adjust amplifier offset voltages, set FM switch to DC, and set FREQUENCY TUNE to 300 MHz. Connect DVM to BUFFER OUT test point, A5TP6, and adjust BUFFER OFFSET adjustment, A5R23, for 0 ± 0.5 mVdc at A5TP6.
- 7. Connect DVM to A3A4TP2 and adjust OFFSET adjustment, A3A4R5, for 0 ± 0.5 mVdc at A3A4TP2.
- 8. Connect DVM to OUTPUT test point, A5TP2, and adjust AMPLIFIER OFFSET adjustment, A5R8, for 0 ± 1.0 mVdc at A5TP2.
- 9. Connect DVM to VARACTOR CATHODE test point, A7TP3, and set PEAK DEVIATION switch as shown below. The DVM should read as specified.

PEAK DEVIATION	DVM Reading at A7TP3
2.56 MHz 1.28 MHz 640 kHz 320 kHz 160 kHz 80 kHz 40 kHz 20 kHz 10 kHz 5 kHz	$\begin{array}{c c} & = & < \pm 1.5 \text{ mVdc} \\ & < \pm 1.0 \text{ mVdc} \\ & < \pm 0.75 \text{ mVdc} \\ & < \pm 0.50 \text{ mVdc} \end{array}$

ADJUSTMENTS

5-38. PRELIMINARY FM ADJUSTMENTS (Cont'd)

10. Reset PEAK DEVIATION switch to 2.56 MHz. Turn PEAK DEVIATION vernier and FREQUENCY TUNE control through their ranges. The voltage at A7TP3 should remain less than 1.5 mVdc.

_____1.5 mVdc

11. Set FM switch to OFF and note frequency displayed on generator's counter. Set FM to DC; the frequency should change less than 800 Hz.

_____ 800 Hz

- 12. To set VAR pot (VARACTOR BIAS), A7R19, connect DVM to VARACTOR ANODE test point, A7TP2, and check that voltage is -14.70 ± 0.01 Vdc. If it is not, adjust A7R19 until it is.
- 13. Perform the FM Linearity Adjustment, paragraph 5-39.

5-39. FM LINEARITY ADJUSTMENT

REFERENCE:

Service Sheet 7.

DESCRIPTION:

The positive and negative shaping circuits are adjusted to match the characteristics of the varactors in the RF oscillator. The reference output of a variable-phase generator is used to drive the Signal Generator's FM circuits; its variable phase output is used to drive an oscilloscope's horizontal circuits and the FM linearity circuit. A discriminator is used to demodulate the FM and the demodulated signal is subtracted (i.e., summed 180° out of phase) from the modulation signal in the FM linearity circuit and fed to the oscilloscope's vertical circuits. The shaping circuits are then adjusted for the flatest trace possible on the oscilloscope's display. A reference signal generator and a mixer are used to down-convert the test generator's output to within the range of the discriminator.

NOTE

The Preliminary FM Adjustment (5-38) should be made before performing this adjustment.

(

5-39. FM LINEARITY ADJUSTMENT (Cont'd)

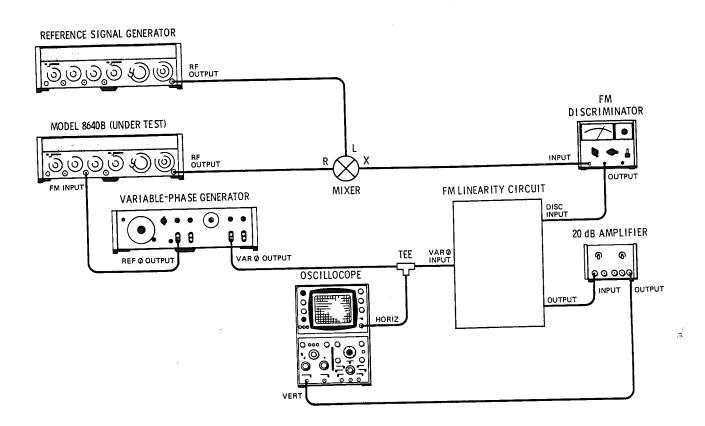


Figure 5-7. FM Linearity Adjustment Test Setup

EQUIPMENT:

Reference Signal Generator																			•	•	HP	98	640	Α
Mixer	•	•	•	•	•	•	•	·	•	•	-									F	IP '	105	514	Α
Mixer FM Discriminator	•	•	•	•	•	•	•	•	•	•	•	•	•	•	:	:		•••			HF	52	210	Α
Filter Kit (for Discriminator)	•	•	•	•	•	•	•	•	•	•	•	•	•	·	•	·	:			F	I P	105	531	Α
Filter Kit (for Discriminator)		•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•••	-	 L	ID (203	Δ.
Variable-Phase Generator .	•	٠	•	•	•	•	•	•	٠	٠	٠	•	•	•		•			•••	•	н. ч.	14 4	200	n n
Oscilloscope						-									HJ	Ϋ.	18	UΑ	1/1	.80	ΤA	110	520	U.
FM Linearity Circuit												•	•		•	•	•	r	IĽ	00	04	0-0	000	00
20 dB Amplifier	•			•	•	•	•	•	•	•	•	•	•	•	•	•	•	۰	•	• •	F	₽ ́	165	A

NOTE

The reference signal generator should have low RF drift, low residual FM (performance approximately equal to the Model 8640A) and be capable of producing 355 MHz at +7 dBm.

5-39. FM LINEARITY ADJUSTMENT (Cont'd)

PROCEDURE:

1. Connect equipment as shown in Figure 5-7 after setting Signal Generator's controls as follows:

Meter Function		•						•		•	•			•							•	•			FM	
COUNTER MODE: EXPAN	D		•								•	•			•	•	•		•	•	•	•			Off	•
LOCK	•			•			•	•		•				•			•	•	•	•	•	•		1	Off	Ĉ
Source									•					•	•	•			•	•	•	•		I	NΤ	
AM							•						•				•	•	•	•	•			0	FF	1
FM					•	•		•	•	•		•	•	•	•	•	•	•			•				AC	5
PEAK DEVIATION																										
PEAK DEVIATION Vernier																										
RANGE																										
FREQUENCY TUNE	•	•	•			•	•	•	•			•	•		•	•			•	•	•		360) N	IHz	5
OUTPUT LEVEL																										
RF ON/OFF	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			ON	I

NOTE

If it is desired to optimize FM linearity at a frequency other than mid-band, proceed as follows:

a. Set RANGE and FREQUENCY TUNE to the desired frequency.

b. Set RANGE to 256 - 512 MHz.

c. Set the reference signal generator 5 MHz below the test generator's output frequency.

- 2. Set reference signal generator for a 355 MHz, CW signal at +7 dBm.
- 3. Calibrate the discriminator; prepare a 25 kHz filter (from the filter kit) and install it in the discriminator. Set FM linearity circuit's var ϕ on/off switch to off. Adjust variable-phase generator's variable phase output's amplitude and the oscilloscope's horizontal gain for full screen deflection on the display. Adjust reference signal generator for 5 MHz on the discriminator.
- 4. Set variable-phase generator's reference phase output for a 1 kHz signal at an amplitude that gives a 2.56 MHz peak deviation indication on the Signal Generator's panel meter. Set linearity circuit's voltage divider switch to 100. Adjust generator's variable phase output's phase for a straight line on the display as shown in Figure 5-8. Adjust oscilloscope's vertical gain for ±1 division at edge of display.

(

5-39. FM LINEARITY ADJUSTMENT (Cont'd)

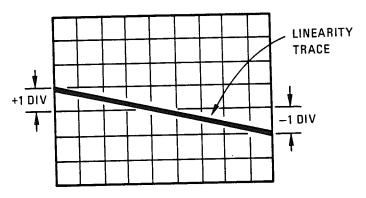


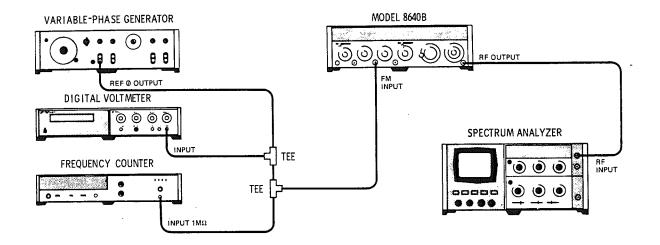
Figure 5-8. FM Linearity Display

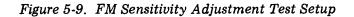
- 5. Set linearity circuit's var ϕ on/off switch to on and the voltage divider switch to 1. This calibrates the display for 1% error in linearity per division.
- 6. Adjust variable-phase generator's variable phase output's phase and linearity circuit's var ϕ gain control for the best possible horizontal straight line over *center* portion of trace.
- 7. Adjust POS SHAPING and NEG SHAPING adjustments, A7R12 and A7R41, for the best possible horizontal straight line at both ends of the trace (but within \pm one major division or $\pm 1\%$).
- 8. Perform the FM Sensitivity Adjustment, paragraph 5-40.

5-40. FM SENSITIVITY ADJUSTMENT

REFERENCE:

Service Sheets 6 and 7.


DESCRIPTION:


The Signal Generator is frequency modulated with an accurate, 1 Vpk, 16.63 kHz signal. The modulated RF output is monitored on a spectrum analyzer and FM sensitivity is adjusted for the first carrier (Bessel) null. The adjustments are made at mid-band and at both band ends. (Peak deviation = $2.405 \times f_{mod}$ at first carrier null.)

NOTE

The FM Linearity Adjustment (5-39) should be made before performing this adjustment.

5-40. FM SENSITIVITY ADJUSTMENT (Cont'd)

EQUIPMENT:

Variable-Phase Generator										•			•										HI	2	03.	A
Digital Voltmeter			•	•			•	•		•		•	•	•				•	HI	2	348	30	B/	34	84.	A
Frequency Counter																			•			Н	IP	53	27	С
Spectrum Analyzer	•	•	•		•	•	•		•	•	•	•	•	•]	H	2	14	117	٢/	855	52	B/	85	53	B

PROCEDURE:

1. Connect equipment as shown in Figure 5-9 after setting Signal Generator's controls as follows:

Meter Function .			•		•	•	•	•			•	•		•		•		•		•			•	\mathbf{FN}	/1
COUNTER MODE:	EXPAND)	•	•		•	•	•		•	•	•	•	•	•	•	•	•	•	•			•	Of	f
	LOCK				•	•		•			•	•	•	•	•	•	•	•	•		•		•	Of	f
	Source		•		-	-	-	-			•	-	•	•		-	-	•	-	-	-	-	-		_
AM																									
FM																									
PEAK DEVIATION																									
PEAK DEVIATION																									
RANGE																									
FREQUENCY TUN	Е		•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	2	24	MH	Z
OUTPUT LEVEL		• •	•	-	-	-	•	-	• •		•		•	•	•	•		-	•	•		_			
RF ON/OFF			•	•	•	•	•	•	• •	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	OI	N

2. Set spectrum analyzer's center frequency to 24 MHz, resolution bandwidth to 3 kHz frequency span (scan width) per division to 20 kHz, and input attenuation to 0 dB. Center signal on display and use reference level controls (set for 10 dB/division) to set signal peak to top (0 dB reference) graticule line on display.

ł

5-40. FM SENSITIVITY ADJUSTMENT (Cont'd)

- 3. Set Signal Generator's FM switch to AC. Adjust variable-phase generator for a frequency counter reading of 16.63 kHz at 707 mVrms as read on DVM.
- 4. Adjust MID FM SENS adjustment, A3A4R3, for at least 50 dB of carrier null.

NOTE

The carrier is the center spectrum line on the display. A 50 dB null is when it drops 50 dB below its CW amplitude (set in step 2).

- 5. Set Signal Generator's FREQUENCY TUNE to 16 MHz. Adjust analyzer to center the carrier on the display. Adjust LOW FM SENS adjustment, A3A4R2 for at least 50 dB of carrier null.
- 6. Set Signal Generator's FREQUENCY TUNE to 32 MHz. Adjust analyzer to center the carrier on the display. Adjust HI FM SENS adjustment, A3A4R4, for at least 50 dB of carrier null.
- 7. Repeat steps 4 through 6 until carrier null is ≥ 50 dB at 16, 24, and 32 MHz.
- 8. Perform the FM distortion and FM sensitivity and accuracy tests in Section IV.

5-41. INTERNAL REFERENCE FREQUENCY ADJUSTMENT

REFERENCE:

Service Sheet 19.

DESCRIPTION:

An oscilloscope is used to display a Lissajous figure (2:1) to set the internal reference frequency. The Lissajous figure is derived from the 10 MHz reference of a frequency counter and the Signal Generator's 5 MHz internal reference. This procedure should be performed whenever the internal reference is found to be out of specification.

5-41. INTERNAL REFERENCE FREQUENCY ADJUSTMENT (Cont'd)

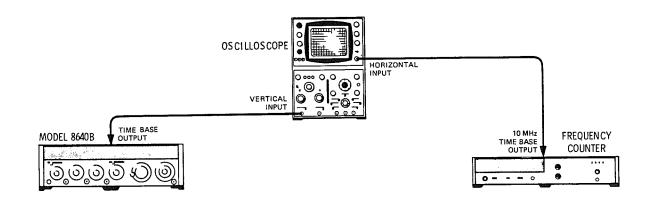


Figure 5-10. Internal Reference Frequency Adjustment Test Setup

EQUIPMENT:

Frequency Counter									HP 5327C OPT H49
Oscilloscope									

PROCEDURE:

- 1. Remove trim strip that holds front panel window in place. Gently pull window up and out and remove it. Allow generator to warm up for 2 hours.
- 2. Connect equipment as shown in Figure 5-10 after setting Signal Generator's controls as follows:

TIME BASE REF INT/EXT (on rear panel)	INT
TIME BASE VERNIER	CAL

- 3. Set oscilloscope's vertical sensitivity to 0.05 V/div (ac) and horizontal scale for external ac. Set magnifier for X 10 and adjust oscilloscope's controls for a Lissajous figure.
- 4. Adjust time base adjustment pot (available through the hole in the front of the counter casting) for a stable 2:1 Lissajous figure (it will look approximately like a figure eight on its side).
- 5. Replace front panel window and trim strip.

.

SECTION VI REPLACEABLE PARTS

6-1. INTRODUCTION

6-2. This section contains information for ordering parts. Table 6-2 lists abbreviations used in the parts list and throughout the manual. Table 6-3 lists all replaceable parts in reference designator order. Table 6-4 contains the names and addresses that correspond to the manufacturer's code numbers.

6-3. EXCHANGE ASSEMBLIES

6-4. Table 6-1 lists assemblies within the instrument that may be replaced on an exchange basis, thus affording a considerable cost saving. Exchange, factory-repaired and tested assemblies are available only on a trade-in basis; therefore, the defective assemblies must be returned for credit. For this reason, assemblies required for spare parts stock must be ordered by the new assembly part number.

6-5. ABBREVIATIONS

6-6. Table 6-2 lists abbreviations used in the parts list, schematics and throughout the manual. In some cases, two forms of the abbreviation are used, one all in capital letters, and one partial or no capitals. This occurs because the abbreviations in the parts list are always all capitals. However, in the schematics and other parts of the manual, other abbreviation forms are used with both lower case and upper case letters.

6-7. REPLACEABLE PARTS LIST

6-8. Table 6-3 is the list of replaceable parts and is organized as follows:

a. Electrical assemblies and their components in alpha-numerical order by reference designation.

b. Chassis-mounted parts in alpha-numerical order by reference designation.

c. Miscellaneous parts.

6-9. The information given for each part consist of the following:

a. The Hewlett-Packard part number.

b. The total quantity (Qty) in the instrument.

c. The description of the part.

d. A typical manufacturer of the part in a five-digit code.

e. The manufacturer's number for the part.

6-10. The total quantity for each part is given only once - at the first appearance of the part number in the list.

NOTE

Total quantities for optional assemblies are totaled by assembly and not integrated into the standard list.

6-11. ORDERING INFORMATION

6-12. To order a part listed in the replaceable parts table, quote the Hewlett-Packard part number, indicate the quantity required, and address the order to the nearest Hewlett-Packard office.

6-13. To order a part that is not listed in the replaceable parts table, include the instrument model number, instrument serial number, the description and function of the part, and the number of parts required. Address the order to the nearest Hewlett-Packard office.

6-14. SPARE PARTS KIT

6-15. Stocking spare parts for an instrument is often done to insure quick return to service after a malfunction occurs. Hewlett-Packard has a "Spare Parts Kit" available for this purpose. The kit consists of selected replaceable assemblies and components for this instrument. The contents of the kit and the "Recommended Spares" list are based on failure reports and repair data, and parts support for one year. A complimentary "Recommended Spares" list for this instrument may be obtained on request and the "Spare Parts Kit" may be ordered through your nearest Hewlett-Packard office.

6-16. ILLUSTRATED PARTS BREAKDOWNS

6-17. Illustrated Parts Breakdowns for the following assemblies are given on the alphabetic foldout pages in this manual (located after the numbered, schematic foldouts):

- A1 Output Level Assembly
- A8 Counter/Lock AssemblyA9 Peak Deviation and Range Switch
- Assembly A10 Divider/Filter Assembly
- A10 Divider/Finter Assembly A11 Variable-Frequency Modulation Oscillator Assembly (Option 001)
- A26 AM/AGC and RF Amplifier Assembly

6-18. Figures 6-1 and 6-2 are breakdowns of the generator's cabinet parts and the parts that comprise the Type N connector, J1.

Defense		Part N	umber
Reference Designation	Description	Exchange Assy	New Assy
A1	Output Level Assy	08640-60081	08640-60113
A3	RF Oscillator Assy	08640-60079	08640-60100
A5	FM Amplifier Assy	08640-60085	08640-60029
A7	FM Shaping Assy	08640-60084	08640-60046†
A8A1	RF Scaler Assy	08640-60083	08640-60168†
A8A2	Counter/Lock Board Assy	08640-60087	08640-60027
A8A3	Time Base Assy	08640-60090	08640-60026
A9	Peak Deviation and Range Switch Assy	08640-60082	08640-60117
A10A1	RF Filter Assy	08640-60091	08640-60021
A10A1	RF Divider Assy	08640-60092	08640-60023
A10A2	Variable-Frequency Modulation Oscillator	08640-60089	08640-60019
AII	Assy (Option 001)		
A26A1	Power Amplifier and AGC Detector Assy	08640-60088	08640-60017
A26A1 A26A4	AGC Amplifier Assy	08640-60086	08640-60015

Table 6-1. Part Numbers for Exchange Assemblies

† See Tables 7-1 and 7-2 for backdating.

Table 6-2. Reference Designations and Abbreviations (1 of 2)

REFERENCE DESIGNATIONS

AT attenuator; isolator; termination
B fan; motor
BT battery
C capacitor
CP coupler
CR diode; diode
thyristor; varactor
DC directional coupler
DL delay line
DS annunciator;
signaling device
(audible or visual);
lamp; LED

E miscellaneous electrical part
F fuse FL filter H hardware
HY circulator J electrical connector (stationary portion); jack
K relay L coil; inductor M meter MP miscellaneous

mechanical part

P electrical connector (movable portion); plug
Q transistor: SCR; triode thyristor
R resistor
RT thermistor
S switch
T transformer
TB terminal board
TC thermocouple
TP test point

U integrated circuit;
microcircuit
V electron tube
VR voltage regulator;
breakdown diode
W
path; wire
X socket
Y crystal unit (piezo-
electric or quartz)
7 Anned constructioned

Z tuned cavity; tuned circuit

ABBREVIATIONS

A ampere
A ampere ac alternating current
ACCESS accessory
ADJ adjustment
ac alternating current ACCESS accessory ADJ adjustment A/D analog-to-digital
AF audio frequency
AFC automatic
frequency control
AGC automatic gain
control
AL aluminum
ALC automatic level
control
AM amplitude modula- tion
AMPL amplifier
APC automatic phase
control
ASSY assembly
ASSY assembly AUX auxiliary
avg average
AWG American wire
gauge
gauge BAL balance
gauge BAL balance BCD binary coded
gauge BAL balance BCD binary coded decimal
decimal
decimal
decimal BD board BE CU beryllium copper
decimal BD board BE CU beryllium copper BFO beat frequency
decimal BD board BE CU beryllium copper BFO beat frequency oscillator
decimal BD board BE CU beryllium copper BFO beat frequency oscillator
decimal BD board BE CU beryllium copper BFO beat frequency oscillator BH binder head BKDN breakdown
decimal BD board BE CU beryllium copper BFO beat frequency oscillator BH binder head BKDN breakdown BP bandpass
decimal BD board BE CU beryllium copper BFO beat frequency oscillator BH binder head BKDN breakdown BP bandpass BPF bandpass filter
decimal BD board BE CU beryllium copper BFO beat frequency oscillator BH binder head BKDN breakdown BP bandpass BPF bandpass filter BRS brass
decimal BD board BE CU beryllium copper BFO beat frequency oscillator BH binder head BKDN breakdown BP bandpass BPF bandpass filter BRS brass BWO backward-wave
decimal BD board BE CU beryllium copper BFO beat frequency oscillator BH binder head BKDN breakdown BP bandpass BPF bandpass filter BRS brass BWO backward-wave oscillator
decimal BD board BE CU beryllium copper BFO beat frequency oscillator BH binder head BKDN breakdown BP bandpass BPF bandpass filter BRS brass BWO backward-wave oscillator CAL calibrate
decimal BD board BE CU beryllium copper BFO beat frequency oscillator BH binder head BKDN breakdown BP bandpass BPF bandpass filter BRS brass BWO backward-wave oscillator CAL calibrate ccw counter-clockwise
decimal BD board BE CU beryllium copper BFO beat frequency oscillator BH binder head BKDN breakdown BP bandpass filter BRS bandpass filter BRS bandpass filter BRS backward-wave oscillator CAL calibrate ccw counter-clockwise CER ceramic
decimal BD board BE CU beryllium copper BFO beat frequency oscillator BH binder head BKDN breakdown BP bandpass filter BRS brass BWO backward-wave oscillator CAL calibrate ccw . counter-clockwise CER channel
decimal BD board BE CU beryllium copper BFO beat frequency oscillator BH binder head BKDN breakdown BP bandpass BPF bandpass filter BRS brass BWO backward-wave oscillator CAL calibrate ccw counter-clockwise CER ceramic CHAN channel cm centimeter
decimal BD board BE CU beryllium copper BFO beat frequency oscillator BH binder head BKDN breakdown BP bandpass filter BRS brass BWO backward-wave oscillator CAL calibrate ccw . counter-clockwise CER channel

00000
COEF coefficient
COEF coefficient COM common
COMP composition
COMPL complete
CONN
CP cadmium plate
CRT cathode-ray tube
CTL complementary
transistor logic
CW continuous wave
cw clockwise cm centimeter
cm centimeter
dB decibel
dBm decibel referred
dB decibel dBm decibel referred to 1 mW
do direct current
deg degree (temperature
interval or differ-
ence)
ence) degree (plane
C degree Celsius
(centigrade)
D desure Debugghoit
F degree Fanrennen
F degree Fahrenheit K degree Kelvin
K degree Kelvin
K degree Kelvin
K degree Kelvin DEPC deposited carbon DET detector diam diameter
K degree Kelvin DEPC deposited carbon DET detector diam diameter DIA diameter (used in
K degree Kelvin DEPC deposited carbon DET detector diam diameter DIA diameter (used in parts list)
K degree Kelvin DEPC deposited carbon DET detector diam diameter DIA diameter (used in parts list) DIFF AMPL differential
K degree Kelvin DEPC deposited carbon DET detector diam diameter DIA diameter (used in parts list) DIFF AMPL differential
K degree Kelvin DEPC deposited carbon DET detector diam diameter DIA diameter (used in parts list) DIFF AMPL differential
K degree Kelvin DEPC deposited carbon DET detector diam diameter DIA diameter (used in parts list) DIFF AMPL differential amplifier div division DPDT double-pole,
K degree Kelvin DEPC deposited carbon DET detector diam diameter DIA diameter (used in parts list) DIFF AMPL differential amplifier div division DPDT double-pole,
K degree Kelvin DEPC deposited carbon DET detector diam diameter DIA diameter (used in parts list) DIFF AMPL differential amplifier div division DPDT double-pole, double-throw DR drive
K
K degree Kelvin DEPC deposited carbon DET detector diam diameter DIA diameter (used in parts list) DIFF AMPL differential amplifier div division DPDT double-pole,
K degree Kelvin DEPC deposited carbon DET detector diam diameter DIA diameter (used in parts list) DIFF AMPL differential amplifier div division DPDT double-pole, double-throw DR drive DSB double sideband DTL diode transistor logic
K degree Kelvin DEPC deposited carbon DET detector diam diameter DIA diameter (used in parts list) DIFF AMPL differential amplifier div division DPDT double-pole, double-throw DR drive DSB double sideband DTL diode transistor logic
K degree Kelvin DEPC deposited carbon DET detector diam diameter DIA diameter (used in parts list) DIFF AMPL differential amplifier div division DPDT double-pole, double-throw DR drive DSB double sideband DTL diode transistor logic DVM digital voltmeter ECL emitter coupled
K degree Kelvin DEPC deposited carbon DET detector diam diameter DIA diameter (used in parts list) DIFF AMPL differential amplifier div division DPDT double-pole, double-throw DR drive DSB double sideband DTL diode transistor logic DVM digital voltmeter ECL emitter coupled
K degree Kelvin DEPC deposited carbon DET detector diam diameter DIA diameter (used in parts list) DIFF AMPL differential amplifier div division DPDT double-pole, double-throw DR drive DSB double sideband DTL diode transistor logic
K degree Kelvin DEPC deposited carbon DET detector diam diameter DIA diameter (used in parts list) DIFF AMPL differential amplifier div division DPDT double-pole, double-throw DR drive DSB double sideband DTL diode transistor logic DVM digital voltmeter ECL emitter coupled

EDP electronic data processing ELECT electrolytic ENCAP encapsulated EXT farad F field-effect transistor F/F filp-flop FH fillister head FIL H fillister head FM. frequency modulation FP front panel FREQ frequency FXD fixed g gram GE glass GRD glass GRD glass GRD hour HET heterodyne HEX head HD high frequency HG high pass filter HR hour (used in
EXT external EXT external Ffarad FET field-effect transistor F/F field-effect field-effect transistor F/F field-effect field-effect field-effect field-effect field-effect field-effect field-effect field-effect field-effect field-effect field-effect field-effect field-effect field-effect field-effect frequency modulation FP field-effect frequency modulation FP field-effect frequency modulation FREQ field-effect g grannel frequency fXD field-effect g grannium GHz grannium GHz gigahertz GL field-effect g ground(ed) H field-effect heterodyne HEX hexagonal HD field-effect hexagonal HD head HDW hardware HF field-effect high frequency HI field-effect high pass filter
EXT external EXT external Ffarad FET field-effect transistor F/F field-effect field-effect transistor F/F field-effect field-effect field-effect field-effect field-effect field-effect field-effect field-effect field-effect field-effect field-effect field-effect field-effect field-effect field-effect frequency modulation FP field-effect frequency modulation FP field-effect frequency modulation FREQ field-effect g grannel frequency fXD field-effect g grannium GHz grannium GHz gigahertz GL field-effect g ground(ed) H field-effect heterodyne HEX hexagonal HD field-effect hexagonal HD head HDW hardware HF field-effect high frequency HI field-effect high pass filter
EXT external F farad FET field-effect transistor f/f F/F filip-flop FH filister head FIL H filister head FN frequency modulation FP frequency modulation FP frequency modulation FREQ frequency FXD gram GE gram GL gram GL glgahertz GL glass GRD ground(ed) H heard HET heterodyne HEX hexagonal HD head HDW hardware HF high frequency HG mercury HI high pass filter
F farad FET field-effect transistor fip-flop FH flat head FIL H filister head FM frequency modulation FP frequency modulation FP frequency modulation FP frequency modulation FP frequency modulation FREQ frequency FXD fixed g germanium GE ggahertz GL glass GRD ground(ed) H heary h heargonal HD head HDW hardware HF high frequency HG mercury HI high pass filter
FET field-effect transistor F/F flip-flop FH flat head FIL H fillister head FM frequency modulation FP front panel FREQ frequency FXD fixed g gram GE glashertz GL glass GRD glashertz GL glass GRD glass GRD hear HET heterodyne HEX heterodyne HEX heterodyne HEX heterodyne HF high frequency HG high frequency HI high pass filter
transistor F/F flip-flop FH flat head FIL H fillister head FM. frequency modulation FP front panel FREQ frequency FXD fixed g gram GE glass GRD glass GRD ground(ed) H henry h hour HET heterodyne HEX heterodyne HF high frequency HG
F/F flip-flop FH flat head FIL H fillister head FM. frequency modulation FP FREQ frequency FXD fixed g gram GE gramium GHz glgahertz GL glass GRD ground(ed) H heary h heary h heary HET heterodyne HEX hexagonal HD head HDW hardware HF high frequency HG mercury HI high pass filter
FH flat head FIL H fillister head FM frequency modulation FP front panel FREQ frequency FXD fixed g gram GE gram GL glgahertz GL ground(ed) H henry h heat HET heterodyne HEX hexagonal HD hardware HF high frequency HG mercury HI high pass filter
FM. frequency modulation FP. front panel FREQ. frequency FXD. frequency FXD. frequency g. germanium GE. germanium GHz gigahertz GL. gigahertz GL. glass GRD. ground(ed) H. henry h. hour HET heterodyne HEX. hexagonal HD Hadware HF High frequency HI HP Hewlett-Packard
FM. frequency modulation FP. front panel FREQ. frequency FXD. frequency FXD. frequency g. germanium GE. germanium GHz gigahertz GL. gigahertz GL. glass GRD. ground(ed) H. henry h. hour HET heterodyne HEX. hexagonal HD Hadware HF High frequency HI HP Hewlett-Packard
FP front panel FREQ frequency FXD fixed g gram GE germanium GHz gigahertz GL gigahertz GL gram Hz gigahertz GL gigahertz GL ground(ed) H heary heary heterodyne HEX heterodyne HEX hetadware HD heardware HF high frequency HG mercury HI hewlett-Packard HPP high pass filter
FREQ frequency FXD fixed g gram GE germanium GHz gigahertz GL gigahertz GL gigahertz GL gigahertz GL gigahertz GL ground(ed) H henry h heved HET heterodyne HEX hexagonal HD head HDW hardware HF high frequency HG mercury HI high pass filter
FREQ frequency FXD fixed g gram GE germanium GHz gigahertz GL gigahertz GL gigahertz GL ground(ed) H henry h heterodyne HET heterodyne HEX hexagonal HD head HDW hardware HF high frequency HG mercury HI heylett-Packard HPP high pass filter
g gram GE germanium GHz gigahertz GL glass GRD ground(ed) H henry h hour HET heterodyne HEX hexagonal HD hard ware HF high frequency HG mercury HI hewlett-Packard HPP high pass filter
g gram GE germanium GHz gigahertz GL glass GRD ground(ed) H henry h hour HET heterodyne HEX hexagonal HD hard ware HF high frequency HG mercury HI hewlett-Packard HPP high pass filter
GE germanium GHz gigahertz GL glass GRD ground(ed) H henry h hour HET heterodyne HEX
GHz gigahertz GL glass GRD ground(ed) H henry h hour HET heterodyne HEX
GLglass GRD ground(ed) Hhenry hhour HETheterodyne HEXhead HDWhead HDWhead HTFhigh frequency HGhigh frequency HIhigh frequency HIhigh frequency HIhigh pass filter
GRD ground(ed) H henry h hour HET heterodyne HEX heterodyne HEX heterodyne HD heterodyne HD heterodyne HD heterodyne HF high frequency HG high frequency HI high HP high pass filter
Hhenry hhenry HETheterodyne HEXheterodyne HEXhead HDWhead HDWhead HDWhead HFhigh frequency HGhigh HPhigh pass filter
hhour HET heterodyne HEX heterodyne HDW head HDW head HDW head HF high frequency HG mercury HI high HP high pass filter
HET heterodyne HEX hexagonal HD head HDW hard ware HF high frequency HG mercury HI high precurvy HI high packard HPP high pass filter
HEX hexagonal HD head HDW hardware HF high frequency HG mercury HI high HP high pass filter
HDhead HDWhardware HFhigh frequency HGhigh frequency HIhigh HPhigh pass filter
HDW hardware HF high frequency HG mercury HI high HP Hewlett-Packard HPF high pass filter
HF high frequency HG mercury HI high HP Hewlett-Packard HPF high pass filter
HG mercury HI high HP Hewlett-Packard HPF high pass filter
HI high HP Hewlett-Packard HPF high pass filter
HI high HP Hewlett-Packard HPF high pass filter
HP Hewlett-Packard HPF high pass filter
HPF high pass filter
tip hour (used in
parts list)
HV high voltage
Hz Hertz
IC integrated circuit
ID inside diameter
IF intermediate
frequency
IMPG impregnated
in inch
INCD incandescent
INCL include(s)
INCL include(s) INP input
INS insulation

INT internal kg kilogram kHz kilohertz kΩ kilohm
kg kilogram
kHz kilohertz
$k\Omega$ kilohm kV kilovolt
kV kilovolt
lb pound LC inductance-
LC inductance-
capacitance
LED light-emitting diode
LF low frequency
LG long
LG long LH left hand
LIM limit
LIN linear taper (used
in norte list)
lin linear LK WASH lock washer
IN WASU lock washer
LA WASH Ideal orgillator
LO low; local oscillator LOG logarithmic taper
(used in parts list)
(used in parts ist)
log logrithm(ic) LPF low pass filter
LPF low pass inter
m meter (distance)
mA milliampere
MAX maximum
$M\Omega$ meg ohm MEG meg (10 ⁶) (used
MEG meg (10 ⁰) (used
in parts list)
MET FLM metal film
MET FLM metal film MET OX metallic oxide
MF medium frequency;
microfarad (used in
parts list)
MFR manufacturer
mg milligram
MHz megahertz mH millihenry
mH millihenry
mho mho
mho mho MIN minimum
min minute (fime)
' minute (plane
angle)
MINAT miniature
mm millimeter

NOTE All abbreviations in the parts list will be in upper-case.

¢

ł

Table 6-2. Reference Designations and Abbreviations (2 of 2)

MOD modulator
MOM momentary
MOM momentary MOS metal-oxide
remiconductor
ms millisecond MTG mounting
Mg mounting
MTG incumung
MTR meter (moleauns
device)
mV millivolt
mVac millivolt, ac mVdc millivolt, dc
mVdc millivolt, dc
mVpk millivolt, peak mVp-p millivolt, peak-
mVp-p millivolt, peak-
to-peak
mVrms millivolt, rms
MIW multipley
MUA indicipies
MY mylar
μA microampere
μ F microfarad
mw multiplex MUX multiplex MY microampere μA microfarad μH microfenry umpromho micromho
µmho micromho
Us microsecond
μv microvolt
UVac microvolt, ac
UVdc microvolt, dc
UVnk microvolt, peak
I/Vn-n microvolt, peak-
μ Vac microvolt, ac μ Vdc microvolt, dc μ Vpk microvolt, peak μ Vp-p microvolt, peak- to-neck
to-peak
livrms microvolt, rms
$\mu Vrms \ldots$ microvolt, rms $\mu W \ldots$ microwatt
$\mu Vrms \ldots$ microvolt, rms $\mu W \ldots$ microwatt
μVrms microvolt, rms μW microvatt nA nanoampere NC no connection
μ Vrms microvolt, rms μ W microvatt nA nanoampere NC no connection N/C normally closed
μVrms microvolt, rms μW microwatt nA nanoampere NC no connection N/C normally closed NE neon
μVrms microvolt, rms μW microvolt, rms μW microwatt nA nanoampere NC no connection N/C normally closed NE neon
μVrms microvolt, rms μW microvolt, rms μW microvolt, rms μN nanoampere NC no connection N/C normally closed NE negative nF nanofarad
μVrms microvolt, rms μW microvolt, rms nA nanoampere NC normally closed NE negative nF nanofarad NI PL nickel plate
μVrms microvolt, rms μW microvolt, rms nA nanoampere NC normally closed NE negative nF nanofarad NI PL nickel plate
μVrms microvolt, rms μW microvolt, rms μW microvolt, rms μW microvolt, rms nA nanoampere NC no connection N/C normally closed NE neon NEG negative nF nanofarad NI PL nickel plate N/O normally open
μVrms microvolt, rms μW microvolt, rms μW microvolt, rms μW microvolt, rms nA nanoampere NC no connection N/C normally closed NE neon NEG negative nF nanofarad NI PL nickel plate N/O normally open
μVrms microvolt, rms μW microvolt, rms μW nanoampere NC no connection N/C normally closed NE nonofarad NI PL nickel plate N/O normally open NORM normal
μVrms microvolt, rms μW microvolt, rms μW nanoampere NC no connection N/C normally closed NE normally closed NE neon NEG nanofarad NI PL nickel plate N/O normally open NOM normal NPN negative-positive-
UVrms microvolt, rms UW nanoampere NC no connection N/C normally closed NEG negative nF nanofarad NI PL nickel plate N/O normally open NOM normal NORM normal NPN negative-positive- negative negative
μVrms microvolt, rms μW nanoampere NC no connection N/C normally closed NEG neon NEG negative nF nanofarad NI PL nickel plate N/O normally open NOM normal NORM normal NPN negative negative NPO
μVrms microvolt, rms μW nanoampere NC normally closed NE neon NEG negative NF normally open NORM normal NPN negative-positive- negative NPO NPO negative-positive zero (zero tempera-
μVrms microvolt, rms μW microvolt, rms μW nanoampere NC no connection N/C normally closed NE normally closed NE neon NEG nanofarad NI PL nickel plate N/O normally open NOM normal NPN negative-positive- negative NPO NPO negative-positive- czero (zero tempera- ture coefficient)
μVrms microvolt, rms μW microvolt, rms μW nanoampere NC no connection N/C normally closed NE normally closed NE neon NEG neonic NPC nanofarad NI PL nickel plate N/O normally open NOM normal NORM normal NPN negative-positive- negative NPO NPO negative-positive- zero (zero tempera- ture coefficient) NRFR
UVrms microvolt, rms UW nanoampere NC no connection N/C normally closed NEG negative nF nanofarad NI PL nickel plate N/O normally open NOM normal NORM normal NPN negative-positive negative NPO negative-positive zero (zero tempera- ture coefficient) NRFR nor recommended for field replace-
μVrms microvolt, rms μW microvolt, rms μW nanoampere NC no connection N/C normally closed NE neon NEG neon NF nanofarad NI PL nickel plate N/O normally open NORM normal NPN negative-positive- negative normal NPN negative-positive- negative NPO NRFR not recommended for field replace- ment
UVrms microvolt, rms UW microvolt, rms UW microvolt, rms UW microvolt, rms UW microvolt, rms MA nanoampere NC no connection N/C normally closed NE neon NEG neon NEG neofarad NI PL nickel plate N/O normally open NORM normal NPN negative-positive- negative normal NPN negative-positive- negative cero (zero tempera- ture coefficient) NRFR NRFR not recommended for field replace- ment NSR not separately
μVrms microvolt, rms μW microvolt, rms μW nanoampere NC no connection N/C no connection N/C normally closed NE neon NEG neon nF neon NP negative NOM normally open NOM normal NPN negative-positive- negative NPO NPO negative-positive- zero (zero tempera- ture coefficient) NRFR not recommended for field replace- ment NSR NSR not separately replaceable
UVrms microvolt, rms UW nanoampere NC no connection N/C normally closed NEG negative nF nanofarad NI PL nickel plate N/O normally open NOM normal NORM normal NPN negative NPO negative-positive zero (zero temperature coefficient) NRFR not recommended for field replace ment NSR NSR not separately replaceable nanosecond
UVrms microvolt, rms UVrms microvolt, rms UW microwatt nA nanoampere NC no connection N/C normally closed NEG neon NEG negative nF nanofarad NI PL nickel plate N/O normally open NOM normally open NOM normally open NOM normally open NOM normally open NOR normally open NPN negative-positive- negative NPO negative-positive- zero (zero tempera- ture coefficient) NRFR not recommended for field replace- ment NSR not separately replaceable ns nanosecond nW nanowatt
UVrms microvolt, rms UW nanoampere NC no connection N/C normally closed NEG negative nF nanofarad NI PL nickel plate N/O normally open NOM normal NORM normal NPN negative NPO negative-positive zero (zero temperature coefficient) NRFR not recommended for field replace ment NSR NSR not separately replaceable nanosecond
UVrms microvolt, rms UVrms microvolt, rms UW microwatt nA nanoampere NC no connection N/C normally closed NEG neon NEG negative nF nanofarad NI PL nickel plate N/O normally open NOM normally open NOM normally open NOM normally open NOM normally open NOR normally open NPN negative-positive- negative NPO negative-positive- zero (zero tempera- ture coefficient) NRFR not recommended for field replace- ment NSR not separately replaceable ns nanosecond nW nanowatt

OD outside diameter
OH oval head
OH oval head OP AMPL operational
amplifier
OPT option
OSC oscillator
OX oxide
oz ounce
$\Omega_2 \ldots $ onm
P peak (used in parts
list)
PAM pulse-amplitude
modulation
PC printed circuit
PCM pulse-code modula-
tion; pulse-count
modulation
PDM pulse-duration
modulation
pF picofarad PH BRZ phosphor bronze BUL Phillips
PH BR 7 phosphor bronze
PHL Phillips
PIN positive-intrinsic-
negative
PIV peak inverse
voltage
pk peak
PL phase lock PLO phase lock
oscillator
PM phase modulation
PM phase modulation PNP positive-negative-
positive
P/O part of
POLY polystyrene
POPC norcelsin
PORC porcelain POS positive; position(s)
POS positive; position(s)
(used in parts list)
POSN position
POT potentiometer
p-p peak-to-peak
PP peak-to-peak (used
in parts list)
PPM pulse-position
modulation
PREAMPL preamplifier
PRF pulse-repetition
frequency
PRR pulse repetition
rate
rate ps picosecond PT point PTM pulse-time
PTM pulse-time
modulation
PWM pulse-width
modulation

PWV peak working voltage
RC resistance-
RECT rectifier
REF reference
REF reference
REG regulated
REG regulated REPL replaceable
RF rauto frequency
interference
RH ⁽ round head; right hand
RLC resistance-
inductance-
capacitance
DMO male mount only
rms root-mean-square
RND round
RND
ROM read-only memory
R&P rack and panel RWV reverse working
voltage
S scattering parameter
s second (time)
" second (plane angle)
S-B slow-blow (fuse)
(used in parts list)
SCR silicon controlled
rectifier; screw
SE selenium
SECT sections
SECT sections SEMICON semicon-
ductor
SHF superhigh fre-
quency
SI silicon
SIL silver
SL slide
SL slide SNR signal-to-noise ratio SPDT single-pole,
double-throw
SPG spring
SR split ring
SPST single-pole,
single-throw
SSB single sideband
SST stainless steel
STL steel
SQ square SWR standing-wave ratio
SWR Stanung-wave latto
SYNC synchronize
T timed (slow-blow fuse)
TA tantalum
TC temperature
compensating

TDtime delayTERMterminalTFTthin-film transistorTGLtoggleTHDthreadTHRUthroughTItitaniumTOLtoleranceTPIMtitmmer
TI titanium
TOL tolerance
TRIM trimmer TSTR transistor
TTL transistor-transistor
logic
TV television
TVI television interference
TWT traveling wave tube
U micro (10 °) (used
in parts list)
UF microfarad (used in parts list)
UHF ultrahigh frequency
UNREG unregulated
V Volt
VA voltampere
VA voltampere Vac volts, ac VAR variable
VAR variable
VCO voltage-controlled
oscillator
Vdc volts, dc VDCW. volts, dc, working
VDCW. volts, dc, working
(used in parts list)
V(F) volts, filtered VFO variable-frequency
oscillator
VHF very-high fre-
quency
VDK VOILS, PEAK
Vp-p volts, peak-to-peak
Vrms volts, rms VSWR voltage standing
wave ratio
VTO voltage-tuned
oscillator
VTVM vacuum-tube voltmeter
V(X) volts, switched
W Watt
W/
WIV working inverse voltage
WW wirewound
W/O Without
YIG yttrium-iron-garnet Z ₀ characteristic
Z _o characteristic
impedance

NOTE

All abbreviations in the parts list will be in upper-case.

MULTIPLIERS

Abbreviation	Prefix	Multiple
T G	tera giga	10^{12} 10^{9}
M k	mega kilo	10 ⁶ 10 ³
da d	deka deci	$10 \\ 10 - 1$
c . m	centi milli	10-2 10-3
μ	micro	106 109
p f	pico femto	10-12 10-15
a	atto	10-18

1

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A1 A1	08640-60113 08640-60081	1	OUTPUT LEVEL ASSY Rebuilt 08640-60113, requires exchange	28480 28480	08640-60113 08640-60081
AIMP1 AIMP2 AIMP3 AIMP4 AIMP5 AIMP6 AIMP7	0380-0021 0380-0029 0510-1176 0540-0002 1430-0760 2190-0020	4 2 2 2 2 2 2 2	SPACER, ROUND, .312 L SPACER, POST TYPE STL 1.000" LG SCREW:THREADED STRUTT NUT:HEX 5-40 .094 X .188" LG GEAR SPUR NOT ASSIGNED WASHER; LOCK; HELIGAL; 5 .128 ID .239	76854 00000 76854 28480 28480	3457-420 OBD 22041-255 1430-0760 2190-0020
A1MP8 A1MP9 A1MP10 A1MP11 A1MP12	3130-0445 3130-0446 3130-0455 5040-0218 08640-00020	1 1 1 2 1	SWITCH,SGL SECT SWITCH,SGL SECT Shaft Assy:Inner 0.125" DIA Coupler:Switch Shaft Support:PC Board	28480 28480 76854 28480 28480	3130-0445 3130-0446 A-3130-9008 5040-0218 08640-00020
A1MP13 A1MP14 A1MP15 A1MP16 A1MP17	08640-00023 08640-20087 08640-20205 08640-20208	1 1 3 1	SUPPORT:GEAR ASSY:ATTENUATOR SUPPORT:ATTENUATOR GEAR SPUR SHAFT GEAR NOT ASSIGNED	28480 28480 28480 28480	08640-00023 08640-20087 08640-20205 08640-20205
A1MP18 A1MP19 A1MP20 A1MP21 A1MP22	1480-0082 2190-0016 2190-0019 2200-0109	1 2 16 4	NOT ASSIGNED PIN:SPIROL WASHER; LOCK; INT .377 ID .507 OD WASHER; LOCK; HELICAL; 4 .115 ID .226 SCREW;MACHINE; 4-40 UNC-2A .438 IN PAN	00287 78189 28480 28480	TYPE 302 1920-02 2190-0019 2200-0109
A1MP23 A1MP24 A1MP25 A1MP26 A1MP27	2200-0141 2200-0167 2950-0001 3030+0007 3050-0105	2 4 2 16 2	SCREW;MACHINE; 4-40 UNC-2A .312 IN PAN SCREW;MACHINE; 4-40 UNC-2A .375 IN 82 NUT, MEX 3/8-32 .094 X .5, BRS, NI PL SCREW;SET; 4-40 UNC-3A .125 IN WASHER; FLAT; 4 .125 ID .281 OD	28480 28480 12697 28480 28480	2200-0141 2200-0167 3030-0007 3050-0105
AIRIA Airib	2100-3292	1	R:VAR CERMET 1K OHM (INCLUDES A1R1B, NSR) (PART OF A1R1A, NSR)	28480	2100-3292
A1 A1 '	08640-60010	1	RF VERNIER ASSY	28480	08640-60010
A1A1R1 A1A1R2	0698-7532 0698-7794	1	RESISTOR; FXD; 100 OHM.25% .125W F Resistor; FXD; 10K.25% .125W F TUBULAR	30983 30983	MF4C1/8-T0-100R-C MF4C1/8-T0-1002-C
A1A1R3 A1A1R4 A1A1R5 A1A1R6	0698-3449 0757-0280 2100-2521 2100÷2521	3 26 7	RESISTOR; FXD; 28.7K1% .125W F TUBULAR RESISTOR; FXD; 1K1% .125W F TUBULAR RESISTOR, VAR, TRMR, 2KOHM 10% C RESISTOR, VAR, TRMR, 2KOHM 10% C	16299 24546 19701 19701	C4-1/8-T0-2872-F C4-1/8-T0-1001-F ET50X202 ET50X202
*A1A2	08640-60144	1	DUTPUT ATTENUATOR ASSY	28480	08640-60144
A2	086 4 0∺60031	- 1	METER SWITCH/DETECTOR ASSY	28480	08640-60031
A2C1 A2C2 A2C3	0160-0128 0180-1746 0160-2199	1 4 5	CAPACITOR;FXD; 2.2UF+-20% 25WVDC CAPACITOR-FXD; 15UF+-10% 20VDC TA-SOLID CAPACITOR;FXD; 30PF+-5% 300WVDC	28480 56289 28480	0160-0128 150D156X902082 0160-2199
A2C4 A2C5 A2CR1 A2MP1	0180-1746 0180-2207 1901-0040 4040-0749 1480-0073	3 39 4 16	CAPACITOR-FXD, 15UF+-10% 20VDC TA-SOLID Capacitor-FXD, 100UF+-10% 10VDC TA Digde; Switching;si ; 30v max vrm 50Ma Extractor:PC Board, Brown PIN:DRIVE 0.250° LG	56289 56289 28480 28480 00000	150D156X902082 150D107X9010R2 1901-0040 4040-0749 08D
A 2R 1 A 2R 2 A 2R 3 A 2R 4 A 2R 5	0698-7095 0698-3160 0698-3160 0757-0442 2100-2633	1 5 42 1	RESISTOR; FXD; 11K.25% .125W F TUBULAR RESISTOR; FXD; 31.6K1% .125W F TUBULAR RESISTOR; FXD; 31.6K1% .125W F TUBULAR RESISTOR; FXD; 10K1% .125W F TUBULAR RESISTOR, VAR, TRMR, 1KOHM 10% C	19701 16299 16299 24546 19701	MF4C1/8-T2-1102-C C4-1/8-T0-3162-F C4-1/8-T0-3162-F C4-1/8-T0-3162-F ET50X102
A2R6 A2R7 A2R8 A2R9 A2R9 A2R10	0698-3440 0698-3460 0757-0279 0757-0420 0698-3157	7 1 8 7 2	RESISTOR; FXD; 196 DHM1% .125W F RESISTOR; FXD; 422Kl% .125W F TUBULAR RESISTOR; FXD; 3.16Kl% .125W F TUBULAR RESISTOR; FXD; 750 DHM1% .125W F RESISTOR; FXD; 19.6Kl% .125W F TUBULAR	16299 19701 24546 24546 16299	
A2R11 A2S1 A A2S1 B A2S1C	0757-0398 3101-1728	43	RESISTOR; FXD; 75 OHM1X .125W F TUBULAR SWITCH, P8 -STA DPDT (INLUDES A2S1B,C, NSR) SWITCH, P8 -STA DPDT (PART OF A2S1A, NSR) SWITCH, P8 -STA DPDT(PART OF A2S1A,NSR)	24546 28480 28480	3101-1728

Ć

1

.

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
<u> </u>					
A2TP1 A2TP2 A2TP3	0360-1514 0360-1514 0360-1514	88	TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD	28480 28480 28480	036 0- 1514 0360-1514 0360-1514
A2TP4 A2TP5 A2U1 A2U2	0360-1514 0360-1514 1820-0158 1820-0476 1902-0025	3 1 5	TERMINAL, SLDR STUD TERMINAL, SLDR STUD IG;LIN;MISCELLANEOUS (LINEAR) IG;LIN;OPERATIONAL AMPLIFIER DIDDE; ZENER; 10V VZ; .4W MAX PD	28480 28480 27014 07263 04713	0360-1514 0360-1514 LM302H 715HC SZ 10939-182
A2VR1 A2VR2	1902-3104	1	DIDDE; ZENER; 5.62V VZ; _4W MAX PD	04713	SZ 10939-110
A3 A3	08640-60100 08640-60079	1	RF DSCILLATOR ASSY Rebuilt 08640-60100, requires exchange	28480 28480	08640-60100 08640-60079
A3MP1 A3MP2 A3MP3	3030-0007 3030-0007 3030-0007		SCREW;SET; 4-40 UNC-3A .125 IN SCREW;SET; 4-40 UNC-3A .125 IN SCREW;SET; 4-40 UNC-3A .125 IN	28480 28480 28480	3030-0007 3030-0007 3030-0007
A3MP4 A3MP5 A3MP6 A3MP7 A3MP8	3030-0007 3030-0007 3030-0007 0510-0005 0510-0005	2	SCREW;SET; 4-40 UNC-3A .125 IN SCREW;SET; 4-40 UNC-3A .125 IN SCREW;SET; 4-40 UNC-3A .125 IN RETAINER, RING, .25 DIA, CAD PLT STL RETAINER, RING, .25 DIA, CAD PLT STL	28480 28480 28480 79136 79136	3030-0007 3030-0007 3030-0007 5100-25-S-MD 5100-25-S-MD
A3MP9 A3MP10 A3MP11 A3MP12 A3MP13	1430-0759 1430-0759 08640-20106 08640-20106 08640-40036	3 2 1	GEAR SPUR Gear Spur Bushing:Pdt Bushing:Pdt Fine Tune Shaft	28480 28480 28480 28480 28480 28480	1430-0759 1430-0759 08640-20106 08640-20106 08640-40036
A3MP14 A3MP15 A3MP16 A3R1 A3R2	08640-20118 1400-0024 08640-00036 2100-3265 2100-0541	1 1 1 1 1	CAP:TRANSISTOR CLAMP, CABLE, .25 DIA .5 W NYL SUPPORT:P.C. BOARD RESISTOR, VAR, CONT, 10K 20% C RESISTOR, VAR, CONT, PREC, 1K 3% NOTE: WHEN REPLACING A3R1,R2, ALSO	28480 95987 28480 28480 28480 28480	08640-20118 WC46NA 08640-00036 2100-3265 2100-3541
A3A4 †	08640-60040	1	REPLACE BUSHING A3MP11 OR MP12 AND WASHER (2190-0016). Connector Board Assy	28480	08640-60040
A3A4C1 A3A4C2 A3A4R1 A3A4R2 A3A4R3	0160-2055 0160-2055 2100-3161 2100-3109 2100-3109	38 1 4	CAPACITOR,FXD, .01UF+80-20% 100HVDC CAPACITOR,FXD, .01UF+80-20% 100HVDC RESISTOR,VAR,TRMR 20K 0HM 10% C RESISTOR,VAR,TRMR 2K 0HM 10% C RESISTOR,VAR,TRMR 2K 0HM 10% C	28480 28480 32997 32997 32997	0160-2055 0160-2055 3006P-1-203 3006P-1-202 3006P-1-202
A3A4R4 A3A4R5 A3A4R6 A3A4R7 A3A4R8	2100-3154 2100-3154 0757-0442 0757-0420 0698-0084	4	RESISTOR,VAR,TRMR 1K OHM 10% C RESISTOR,VAR,TRMR 1K OHM 10% C RESISTOR; FXD; 10K1% J25W F TUBULAR RESISTOR; FXD; 750 OHM1% J125M F RESISTOR; FXD; 2.15K1% J125M F TUBULAR	32997 32997 24546 24546 16299	C4-1/8-T0-751-F
A3A4R9 A3A4U1	0757-0416 1820-0158	17	RESISTOR; FXD; 511 OHM1 T . 125W F IC;LIN;MISCELLANEOUS (LINEAR)	24546 27014	
A4	08640-60032	1	METER/ANNUNCIATOR DRIVE ASSY	28480	08640-60032
A4C1 A4C2 A4C3	0160-2199 0180-0228 0160-2055	5	CAPACITOR;FXD; 30PF+-5% 300WVDC CAPACITOR-FXD; 22UF+-10% 15VDC TA-SOLID CAPACITOR,FXD; .01UF+80-20% 100WVDC	28480 56289 28480	150D226X9015B2
A4C4 A4C5 A4CR1 A4CR2	0160-2055 0160-2199 1901-0040 1901-0025	21	CAPACITOR,FXD, .01UF+80-203 100WVDC Capacitor;FXD; 30PF+-53 300WVDC Didde; Switching;SI ; 30V Max VRM 50MA Didde; gen PRP;SI ; 100V Max VRM 200MA	28480 28480 28480 28480	0160-2199 1901-0040
A4MP1 A4Q1 A4Q2	4040-0750 1480-0073 1854-0071 1854-0019	2 29 4	EXTRACTOR:PC BOARD, RED PIN:DRIVE 0.250" LG TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI PD=360MW FT=500MHZ	28480 00000 28480 28480	0 08D 1854-0071 1854-0019
A4Q3 A4R1 A4R2 A4R3 A4R4	1854-0019 0757-0442 0757-0442 0757-0199 0698-3444	8 3	TRANSISTOR NPN SI PD=360MW FT=500MHZ RESISTOR; FXD; 10K13 .125W F TUBULAR RESISTOR; FXD; 10K13 .125W F TUBULAR RESISTOR; FXD; 21.5K13 .125W F TUBULAR RESISTOR; FXD; 316 0HM13 .125W F	28480 24544 24544 24544 24544 1629	C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-2152-F

·~.

·)

Table (6-3.	Replaceable Parts
---------	------	--------------------------

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A4R 5 A4R 6 A4R 7 A4R 8 A4R 9	0757-0460 0757-0280 0757-0442 0757-0466 0698-3193	3 1 2	RESISTOR; FXD; 61.9K1% .125W F TUBULAR RESISTOR; FXD; 1K1% .125W F TUBULAR RESISTOR; FXD; 10K1% .125W F TUBULAR RESISTOR; FXD; 110K1% .125W F TUBULAR RESISTOR; FXD; 10K.25% .125W F TUBULAR	24546 24546 24546 24546 19701	C4-1/8-T0-6192-F C4-1/8-T0-1001-F C4-1/8-T0-1002-F C4-1/8-T0-1103-F MF4C1/8-C-1002-C
A4R10 A4R11 A4R12 A4R13 A4R14	2100-2514 0698-3193 0757-0279 0757-0280 0757-0280	2	RESISTOR, VAR, TRMR, 20KOHM 19% C RESISTOR; FXD; 10K.25% .125W F TUBULAR RESISTOR; FXD; 3.16K1% .125W F TUBULAR RESISTOR; FXD; 1K1% .125W F TUBULAR RESISTOR; FXD; 1K1% .125W F TUBULAR	19701 19701 24546 24546 24546	ET50X203 MF4C1/8-C-1002-C C4-1/8-T0-3161-F C4-1/8-T0-1001-F C4-1/8-T0-1001-F
A4R15 A4R16 A4R17 A4R18 A4R19	0757-0346 0757-0346 0698-7340 0698-8307 2100-2521	20 1 1	RESISTOR; FXD; 10 DHM1X .125W F TUBULAR RESISTOR; FXD; 10 DHM1X .125W F TUBULAR RESISTOR; FXD; 79.95K.25X .125W F RESISTOR; FXD; 7.4K.25X .125W F TUBULAR RESISTOR, VAR, TRMR, 2KOHM 10X C	24546 24546 30983 30983 19701	C4-1/8-T0-10R0-F C4-1/8-T0-10R0-F MF4C1/8-T2-79951-C MF52C1/4-T2-7401-C ET50X202
A4R20 A4R21 A4R22 A4TP1 A4TP2	0757-0288 0683-1065 0698-5094 0360-1514 0360-1514	2 1 1	RESISTOR; FXD; 9.09K1% .125W F TUBULAR RESISTOR; FXD; 10M5% .25W CC TUBULAR RESISTOR; FXD; 5.1M5% .25W CC TUBULAR TERMINAL, SLDR STUD TERMINAL, SLDR STUD	30983 01121 01121 28480 28480	MF4C1/8-T0-9091-F CB1065 CB5155 0360-1514 0360-1514
А4ТРЗ А4ТР4 А4ТР5 А4ТР6 А4ТР7	0360-1514 0360-1514 0360-1514 0360-1514 0360-1514		TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD	28480 28480 28480 28480 28480 28480	0360-1514 0360-1514 0360-1514 0360-1514 0360-1514
A4U1 A4U2 A4U3 A4U4 A4V81	1820-0223 1820-0223 1820-0054 1820-0511 1902-0025	2 8 5	IC;LIN;OPERATIONAL AMPLIFIER IC;LIN;OPERATIONAL AMPLIFIER IC;DGTL;GATE IC;DGTL;GATE DIODE; ZENER; 10V VZ; .4W MAX PD	27014 27014 01295 01295 04713	LM301AH LM301AH SN7400N SN7408N SZ 10939-182
A4VR2	1902-0025		DIODE; ZENER; 10V VZ; .4W MAX PD	04713	SZ 10939-182
A5 A5	08640-60029 08640-60085	· 1	FM AMPLIFIER ASSY Rebuilt 08640-60029, Requires exchange	28480 28480	08640-60029 08640-60085
A5C1 A5C2 A5C3	0160-2228 0160-2228 0180-0116	2	CAPACITOR;FXD; .0027UF+-5% 300WVDC CAPACITOR;FXD; .0027UF+-5% 300WVDC CAPACITOR-FXD; 6.8UF+-10% 35VDC TA	28480 28480 56289	0160-2228 0160-2228 150D685X9035B2
A5C4 A5C5 A5C6 A5C7 A5C8	0180-1715 0180-0269 0180-0197 0180-0116 0180-2211	3 1 24 1	CAPACITOR-FXD, 150UF+-10% 6VDC TA-SOLID CAPACITOR-FXD, 1UF+75-10% 150VDC AL CAPACITOR-FXD, 2.2UF+-10% 20VDC TA CAPACITOR-FXD, 6.8UF+-10% 35VDC TA CAPACITOR-FXD, 5UF+50-10% 150VDC AL	56289 56289 56289 56289 56289 56289	1500157X9006R2 30D105G150BA2 150D225X9020A2 150D685X9035B2 30D505F150CC2
A5C9 † A5CR1-4	0160-0939	3	CAPACITOR;FXD; 430PF+-5% 300WVDC Not Assigned	28480	0160-0939
A5CR5 A5CR6	1901-0025 1901-0025		DIGDE; GEN PRP;5I ; 100V MAX VRM 200MA DIGDE; GEN PRP;5I ; 100V MAX VRM 200MA	28480 28480	1901-0025 1901-0025
A5CR7 A5CR8 A5CR9 A5CR10 A5CR11	1901-0025 1901-0025 1901-0025 1901-0050 1901-0050	12	DIODE; GEN PRP; SI; 100V MAX VRM 200MA DIDDE; GEN PRP; SI; 100V MAX VRM 200MA DIODE; GEN PRP; SI; 100V MAX VRM 200MA DIODE; SWITCHING; SI; 80V MAX VRM 200MA DIODE; SWITCHING; SI; 80V MAX VRM 200MA	28480 28480 28480 28480 28480 28480	1901-0025 1901-0025 1901-0025 1901-0050 1901-0050
A5CR12 A5CR13 A5K1	1901-0050 1901-0025 0490-1078	1	DIODE; SWITCHING;SI; BOV MAX VRM 200MA DIODE; GEN PRP;SI; 100V MAX VRM 200MA RELAY, REED, 1A .5A 200V CONT, 5V COIL	28480 28480 32255	1901-0050 1901-0025 SX20-1A05-0S
A5MP1	4040-0750 1480-0073		EXTRACTOR:PC BOARD, RED Pin:Drive 0.250" LG	28480 00000	
A5MP2	4040-0756 1480-0073	1	EXTRACTOR:PC BOARD, WHITE PIN:DRIVE 0.250" LG	28480 00000	
45Q1 45Q2 45Q3 45Q4	1854-0221 1854-0221 1854-0404 1854-0404	5	TRANSISTOR, BIPOL, SI, NPN DUAL TRANSISTOR, BIPOL, SI, NPN DUAL TRANSISTOR NPN SI PD=360MW FT=200MHZ TRANSISTOR NPN SI PD=360MW FT=200MHZ	28480 28480 28480 28480 28480	1854-0221 1854-0404
a5q5 † a5q6 †	1853-0038 1205-0011 1200-0173 1853-0038 1200-0173 1205-0011	5 3 25	TRANSISTOR PNP SI PD=1W FT=100MHZ HEAT-DISSIPATOR, SGL, TO-5 PKG INSULATOR, XSTR, TO- 5, 075 THK TRANSISTOR PNP SI PD=1W FT=100MHZ INSULATOR, XSTR, TD- 5, 075 THK HEAT DISSIPATOR, SGL, TO-5 PKG	28480 28480 28480 28480 28480 28480 28480	1205-0011 1200-0173 1853-0038 1200-0173

.

(

¢

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A5Q7 † A5Q8 †	1853-0038 1200-0173 1854-0039 1200-0173	5	TRANSISTOR PNP SI PD=1W FT=100MHZ INSULATOR, XSTR, TO~ 5, .075 THK TRANSISTOR NPN 2N3053 SI PD=1W INSULATOR, XSTR, TO~ 5, .075 THK HEAT DISSIPATOR, SGL, TO~5 PKG	28480 28480 04713 28480 28480	1853-0038 1200-0173 2N3053 1200-0173 1205-0011
A5Q9	1205-0011 1854-0022 1200-0173	3	TRANSISTOR NPN SI PD=700MW FT=50MHZ INSULATOR, XSTR, TO- 5, .075 THK	07263 28480	\$1 784 3 1200-0173
A5Q10	1854-0237 0510-0002 1205-0085 2360-0199 2420-0003 2190-0018 2190-0007	2 4 2 4 4 5 4	TRANSISTOR,NPN 2N3738 SI PD=20W PRESS-IN NUT, 6-32, .062 LG,.056 MIN HEAT-DISSIPATOR, SGL, TO-49 PKG SCREM;MACHINE; 6-32 UNC-24 .438 IN PAN NUT, HEX 6-32 .094 X .25, SST, PSVT WASHER; LOCK; HELICAL; 6 .141 ID .269 WASHER; LOCK; INT; 6 .141 ID .288 OD	04713 28480 28480 28480 80120 28480 78189	2N3738 0510-0002 1205-0085 2360-0199 2190-0018 1906-00
A5Q11 †	1853-0012 1200-0173	1	TRANSISTOR PNP 2N2904A SI PD=600MW INSULATOR, XSTR, TO- 5, .075 THK	01295 28480	2N2904A 1200-0173
A5Q12	1854-0237 0510-0002 1205-0085 2360-0199 2420-0003 2190-0018 2190-0018	6	TRANSISTOR, NPN 2N3738 SI PD=20W PRESS-IN NUT, 6-32, .062 LG056 MIN HEAT-DISSIPATOR, SGL, TO-49 PKG SCREW; MACHINE: 6-32 UNC-2A .438 IN PAN NUT, HEX 6-32 .094 X .25, SST, PSVT WASHER; LOCK; HELICAL; 6 .141 ID .288 OD RESISTOR; FXD; 46.4K1 .125W F TUBULAR	04713 28480 28480 80120 28480 78189 16299	2N3738 0510-0002 1205-0085 2360-0199 2190-0018 1906-00 C4-1/8-T0-4642-F
A5R1 A5R2 A5R3 A5R4 A5R5 A5R6	0698-3162 0757-0180 0757-0403 0757-0290 0757-0317 0698-3132	3 2 8 5 7	RESISTOR; FXD; 31.6 OHM13 .125W F RESISTOR; FXD; 121 OHM13 .125W F RESISTOR; FXD; 6.19X13 .125W F TUBULAR RESISTOR; FXD; 1.33X13 .125W F TUBULAR RESISTOR; FXD; 261 OHM13 .125W F	24546 24546 30983 24546 16299	C5-1/4-T0-31R6-F C4-1/8-T0-121R-F MF4C1/8-T0-6191-F C4-1/8-T0-1331-F C4-1/8-T0-2610-F
A5R7 A5R8 A5R9 A5R10 A5R11	0698-3410 2100-3164 0698-0085 0757-0317 0698-3132	1 1 10	RESISTOR; FXD; 3.16K1% .5W F TUBULAR RESISTOR,VAR,TRMR 10 OHM 20% C RESISTOR; FXD; 2.61K1% .125W F TUBULAR RESISTOR; FXD; 1.33K1% .125W F TUBULAR RESISTOR; FXD; 261 OHM1% .125W F	19701 32997 16299 24546 16299	MF7C1/2-TO-3161-F 3006P-1-100 C4-1/8-TO-2611-F C4-1/8-TO-1331-F C4-1/8-TO-2610-F
A5R12 A5R13 A5R14 A5R15 A5R16	0757-0290 0757-0180 0757-0403 0698-3162 0757-0401	27	RESISTOR; FXD; 6.19K1% .125W F TUBULAR RESISTOR; FXD; 31.6 OHM1% .125W F RESISTOR; FXD; 121 OHM1% .125W F RESISTOR; FXD; 46.4K1% .125W F TUBULAR RESISTOR; FXD; 100 OHM1% .125W F	30983 24546 24546 16299 24546	MF4C1/8-T0-6191-F C5-1/4-T0-31R6-F C4-1/8-T0-121R-F C4-1/8-T0-4642-F C4-1/8-T0-101-F
A5R17 A5R18 A5R19 A5R20 A5R21	0698- 3446 0698-3132 0757-0401 0757-0346	2	RESISTOR; FXD; 383 OHM1X .125W F RESISTOR; FXD; 261 OHM1X .125W F RESISTOR; FXD; 100 OHM1X .125W F RESISTOR; FXD; 100 OHM1X .125W F TUBULAR NOT ASSIGNED	16299 16299 24546 24546	C4-1/8-T0-383R-F C4-1/8-T0-2610-F C4-1/8-T0-101-F C4-1/8-T0-10R0-F
A5R22 A5R23 A5R24 A5R25 A5R26	0698-3430 2100-3154 0757-0280 0757-0280 0757-0280 0757-0346	1	RESISTOR; FXD; 21.5 OHM1X .125W F RESISTOR,VAR,TRMR 1K OHM 10X C RESISTOR; FXD; 1k1X .125W F TUBULAR RESISTOR; FXD; 1k1X .125W F TUBULAR RESISTOR; FXD; 10 OHM1X .125W F TUBULAR	03888 32997 24546 24546 24546	PME55-1/8-T0-21R5-F 3006P-1-102 C4-1/8-T0-1001-F C4-1/8-T0-1001-F C4-1/8-T0-10R0-F
A5R27 A5R28 A5R29 A5R30 A5R31	0757-0441 0757-0440 0698-3158 0757-0443 0757-0442	6 7 1 4	RESISTOR; FXD; 8.25K1% .125W F TUBULAR RESISTOR; FXD; 7.5K1% .125W F TUBULAR RESISTOR; FXD; 23.7K1% .125W F TUBULAR RESISTOR; FXD; 11K1% .125W F TUBULAR RESISTOR; FXD; 10K1% .125W F TUBULAR	24546 24546 16299 24546 24546	C4-1/8-T0-8251-F C4-1/8-T0-7501-F C4-1/8-T0-2372-F C4-1/8-T0-1102-F C4-1/8-T0-1002-F
A5R32 A5R33 A5R34 A5R35 A5R36	0757-0438 0698-0085 0698-0085 0757-0399 0757-0399	37	RESISTOR; FXD; 5.11K1% .125W F TUBULAR RESISTOR; FXD; 2.61K1% .125W F TUBULAR RESISTOR; FXD; 2.61K1% .125W F TUBULAR RESISTOR; FXD; 82.5 OHM1% .125W F RESISTOR; FXD; 82.5 OHM1% .125W F	24546 16299 16299 24546 24546	C4-1/8-T0-5111-F C4-1/8-T0-2611-F C4-1/8-T0-2611-F C4-1/8-T0-82R5-F C4-1/8-T0-82R5-F C4-1/8-T0-82R5-F
A5R37 A5R38 A5R39 A5R40 A5R41	0698-3391 0757-0198 0698-5839 0698-5839 0698-3260	1 1 2 2	RESISTOR; FXD; 21.5 OHM1% .5W F TUBULAR RESISTOR; FXD; 100 OHM1% .5W F TUBULAR RESISTOR; FXD; 9.1 OHM5% .25W CC RESISTOR; FXD; 9.1 OHM5% .25W CC RESISTOR; FXD; 464K1% .125W F TUBULAR	19701 30983 01121 01121 19701	
A5TP1 A5TP2 A5TP3 A5TP4 A5TP5	0360-1514 0360-1514 0360-1514 0360-1514 0360-1514 0360-1514		TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD	28480 28480 28480 28480 28480 28480	0360-1514 0360-1514 0360-1514
A5TP6 A5U1	0360÷1514 1820-0158		TERMINAL, SLDR STUD IC;LIN;MISCELLANEOUS (LINEAR)	28480 27014	

Ì

Table 6-3. Replaceable Parts

Reference Designation	IP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A6	08640-60033	1	ANNUNCIATOR ASSY	28480	08640-60033
A6DS1	2140-0356	7	LAMP; INCAND; BULB T1; 5V	71744	CM7-7683
A6DS2 A6DS3 A6DS4 A6DS5 A6DS5	2140-0356 2140-0356 2140-0356 2140-0356 2140-0356 2140-0356		LAMP; INCAND; BULB TI; 5V LAMP; INCAND; BULB TI; 5V LAMP; INCAND; BULB TI; 5V LAMP; INCAND; BULB TI; 5V LAMP; INCAND; BULB TI; 5V	71744 71744 71744 71744 71744 71744	CM7-7683 CM7-7683 CM7-7683 CM7-7683 CM7-7683 CM7-7683
A6P1 A6R1	1251-3054 1251-1249 1251-1313 0757-0346	2 2 15	CONNECTOR STRIP:9 OPEN POSITION CONNECTOR-POLARIZING KEY, FOR SER CONTACT, CONN, U/M MICRO SER, FEM RESISTOR; FXD; 10 OHM1% .125W F TUBULAR	74868 13511 13511 24546	221-68 143-953 220-502 C4-1/8-T0-10R0-F
A7 † A7 †	08640-60046 08640-60084	1	FM SHAPING BOARD ASSY Rebuilt 08640-60046, requires exchange	28480 28480	08640-60046 08640-60084
A7C1 A7C2 A7C3 A7C4 A7C5	0180-1735 0180-1735 0180-0373 0180-2141 0180-0141	3 1 1 2	CAPACITOR-FXD, .22UF+-10% 35VDC TA CAPACITOR-FXD, .22UF+-10% 35VDC TA CAPACITOR-FXD, .68UF+-10% 35VDC TA CAPACITOR-FXD, 3.3UF+-10% 50VDC TA CAPACITOR-FXD; 50UF+75-10% 50VDC AL	56289 56289 56289 56289 56289 56289	1500224X9035A2 1500224X9035A2 1500684X9035A2 1500335X905082 30D506G050D02
A7C6 A7C7 A7C8 A7C9 A7C10	0180-1715 0160-2453 0180-1846 0160-2204 0180-0141	1 1 7	CAPACITOR-FXD, 150UF+-10% 6VDC TA-SOLID CAPACITOR;FXD; 22UF+-10% 80WVDC CAPACITOR-FXD; 2.2UF+-10% 35VDC TA CAPACITOR;FXD; 100F+-5% 300WVDC CAPACITOR-FXD; 50UF+75-10% 50VDC AL	56289 84411 56289 28480 56289	150D157X9006R2 HEW-238T 150D225X9035B2 0160-2204 30D5066050DD2
A7C11 A7C12 A7C13 A7CR1 A7CR2	0180-1715 0160-2204 0180-2206 1901-0033 1901-0033	2 20	CAPACITOR-FXD, 150UF+-10% 6VDC TA-SOLID CAPACITOR;FXD; 100PF+-5% 300WVDC CAPACITOR-FXD, 60UF+-10% 6VDC TA-SOLID DIDDE; GEN PRP;SI; 180V MAX VRM 200MA DIDDE; GEN PRP;SI; 180V MAX VRM 200MA	56289 28480 56289 28480 28480	1500157X9006R2 0160-2204 1500606X9006B2 1901-0033 1901-0033
A7CR3 A7CR4 A7CR5 A7CR6 A7CR6 A7CR7	1901-0033 1901-0033 1901-0033 1901-0033 1901-0033 1901-0033		DIODE; GEN PRP;SI; 180V MAX VRM 200MA DIODE; GEN PRP;SI; 180V MAX VRM 200MA	28480 28480 28480 28480 28480 28480	1901-0033 1901-0033 1901-0033 1901-0033 1901-0033
ATCR8 ATCR9 ATCR10 ATCR11 ATCR12	1901-0033 1901-0033 1901-0025 1901-0033 1901-0033		DIODE; GEN PRP;SI; 180V MAX VRM 200MA DIODE; GEN PRP;SI; 180V MAX VRM 200MA DIODE; GEN PRP;SI; 100V MAX VRM 200MA DIODE; GEN PRP;SI; 180V MAX VRM 200MA DIODE; GEN PRP;SI; 180V MAX VRM 200MA	28480 28480 28480 28480 28480 28480	1901-0033 1901-0033 1901-0025 1901-0033 1901-0033
A7CR13 A7CR14 A7CR15 A7CR16 A7CR16 A7CR17	1901-0033 1901-0033 1901-0033 1901-0033 1901-0033 1901-0033		DIDDE; GEN PRP;SI; 180V MAX VRM 200MA DIDDE; GEN PRP;SI; 180V MAX VRM 200MA	28480 28480 28480 28480 28480 28480	1901-0033 1901-0033 1901-0033 1901-0033 1901-0033
A7CR18 A7CR19 A7CR20 A7CR21 A7J1 +	1901-0033 1901-0033 1901-0033 1901-0033 1901-0033 1250-0835	1	DIODE; GEN PRP;SI; 180V MAX VRM 200MA DIODE; GEN PRP;SI; 180V MAX VRM 200MA DIODE; GEN PRP;SI; 180V MAX VRM 200MA DIODE; GEN PRP;SI; 180V MAX VRM 200MA CONNECTOR-COAX, SMC, 50 0HM MALE	28480 28480 28480 28480 28480 24931	1901-0033 1901-0033 1901-0033 1901-0033 37JR104-2
A7K1	0490-1080	3	RELAY, REED, 1C .25A 150V CONT, 5V COIL	32255	SX30-014
A7MP1	4040-0751 1480-0073	1	GUIDE; PC BOARD EXTRACTOR LEXAN,ORANGE PIN:DRIVE 0.250" LG	28480 00000	4 040-0751 08D
A7MP2 A7Q1 A7Q2 A7Q3 †	4040-0748 1480-0073 1854-0071 1854-0071 1854-0022 1200-0173	3	EXTRACTOR:PC BOARD, BLACK PIN:DRIVE 0.250" LG TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI PD=700MW FT=50MHZ INSULATOR, XSTR, TO-5, .075 THK	28480 00000 28480 28480 07263 28480	4040-0748 080 1854-0071 1854-0071 S17843 1200-0173
A704 A705 A706 †	1853-0020 1854-0071 1853-0038 1200-0173	13	TRANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR PNP SI PD=1W FT=100MHZ INSULATOR, XSTR, TD- 5, •075 THK	28480 28480 28480 28480 28480	1853-0020 1854-0071 1853-0038 1200-0173
A7Q7 A7Q8 A7R1 A7R2 A7R3	1853-0020 1853-0020 0698-3162 0698-3450 0698-3153	7 3	TRANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR PNP SI PD=300MW FT=150MHZ RESISTOR; FXD; 46.4K13 .125W F TUBULAR RESISTOR; FXD; 42.2K13 .125W F TUBULAR RESISTOR; FXD; 3.83K13 .125W F TUBULAR	28480 28480 16299 16299 16299	1853-0020 C4-1/8-T0-4642-F C4-1/8-T0-4222-F

¢

¢

Table 6-3. Replaceable Parts

-

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A7R4 A7R5 A7R6 A7R7 A7R8	0757-0199 0757-0440 0698-3243 0698-3454 0757-0289	1 3 3	RESISTOR; FXD; 21.5K1X .125W F TUBULAR RESISTOR; FXD; 7.5K1X .125W F TUBULAR RESISTOR; FXD; 178K1X .125W F TUBULAR RESISTOR; FXD; 125K1X .125W F TUBULAR RESISTOR; FXD; 13.3K1X .125W F TUBULAR	24546 24546 16299 16299 30983	C4-1/8-T0-2152-F C4-1/8-T0-7501-F C4-1/8-T0-1783-F C4-1/8-T0-2153-F MF4C1/8-T0-1332-F
A7R9 A7R10 A7R11 A7R12 A7R13	0698-3161 0698-3154 0757-0288 2100-3109 0698-3155	2 8 6	RESISTOR; FXD; 38.3K1% .125W F TUBULAR RESISTOR; FXD; 4.22K1% .125W F TUBULAR RESISTOR; FXD; 9.09K1% .125W F TUBULAR RESISTOR,VAR,TRMR 2K OHM 10% C RESISTOR; FXD; 4.64K1% .125W F TUBULAR	16299 16299 30983 32997 16299	C4-1/8-T0-3832-F C4-1/8-T0-4221-F MF4C1/8-T0-9991-F 3006P-1-202 C4-1/8-T0-4641-F
A7R14 A7R15 A7R16 A7R17 A7R18	0698-3260 0757-0458 0757-0443 0698-3155 0757-0123	5	RESISTOR; FXD; 464K1% .125W F TUBULAR RESISTOR; FXD; 51.1K1% .125W F TUBULAR RESISTOR; FXD; 11K1% .125W F TUBULAR RESISTOR; FXD; 4.64K1% .125W F TUBULAR RESISTOR; FXD; 34.8K1% .125W F TUBULAR	19701 24546 24546 16299 24546	MF4C1/8-T0-4643-F C4-1/8-T0-5112-F C4-1/8-T0-1102-F C4-1/8-T0-4641-F C5-1/4-T0-3482-F
A7R19 A7R20 A7R21 A7R22 A7R23	2100-3103 0698-3152 0698-3437 0757-0417 0698-0083	1 2 5 1 10	RESISTOR,VAR,TRMR 10K OHM 10% C RESISTOR; FXD; 3.48K1% .125W F TUBULAR RESISTOR; FXD; 133 OHM1% .125W F RESISTOR; FXD; 562 OHM1% .125W F RESISTOR; FXD; 1.96K1% .125W F TUBULAR	32997 16299 16299 24546 16299	3006P-1-103 C4-1/8-T0-3481-F C4-1/8-T0-133R-F C4-1/8-T0-562R-F C4-1/8-T0-1961-F
ATR24 ATR25 ATR26 ATR27 ATR28	0757-0279 0698-3154 0757-0438 0757-0290 0757-0439	5	RESISTOR; FXD; 3.16K1% .125W F TUBULAR RESISTOR; FXD; 4.22K1% .125W F TUBULAR RESISTOR; FXD; 5.11K1% .125W F TUBULAR RESISTOR; FXD; 6.19K1% .125W F TUBULAR RESISTOR; FXD; 6.81K1% .125W F TUBULAR	24546 16299 24546 30983 24546	C4-1/8-TO-3161-F C4-1/8-TO-4221-F C4-1/8-TO-5111-F MF4C1/8-TO-6191-F C4-1/8-TO-6191-F
A7R29 A7R30 A7R31 A7R32 A7R33	0757-0401 0698-4037 0698-4037 0698-4037 0698-4037	7	RESISTOR; FXD; 100 OHM1% .125W F RESISTOR; FXD; 46.4 OHM1% .125W F	24546 16299 16299 16299 16299 16299	C4-1/8-T0-101-F C4-1/8-T0-46R4-F C4-1/8-T0-46R4-F C4-1/8-T0-46R4-F C4-1/8-T0-46R4-F
A7R34 A7R35 A7R36 A7R37 A7R38	0698-4037 0698-4037 0698-4037 0757-0180 0757-0401		RESISTOR; FXD; 46.4 OHMIX .125W F RESISTOR; FXD; 46.4 OHMIX .125W F RESISTOR; FXD; 46.4 OHMIX .125W F RESISTOR; FXD; 31.6 OHMIX .125W F RESISTOR; FXD; 100 OHMIX .125W F	16299 16299 16299 24546 24546	C4-1/8-T0-46R4-F C4-1/8-T0-46R4-F C4-1/8-T0-46R4-F C5-1/4-T0-31R6-F C4-1/8-T0-101-F
A7R39 A7R40 A7R41 A7R42 A7R43	0757-0280 0757-0439 2100-3109 0757-0442 0698-3155		RESISTOR; FXD; 1K1% .125W F TUBULAR RESISTOR; FXD; 6.81K1% .125W F TUBULAR RESISTOR;VAR,TRMR 2K OHM 10% C RESISTOR; FXD; 10K1% .125W F TUBULAR RESISTOR; FXD; 4.64K1% .125W F TUBULAR	24546 24546 32997 24546 16299	C4-1/8-T9-1091-F C4-1/8-T0-6811-F 3006P-1-202 C4-1/8-T0-1002-F C4-1/8-T0-4641-F
A7R44 A7R45 A7R46 A7R47 A7R48	0757-0443 0698-3156 0757-0441 0757-0440 0757-0439	5	RESISTOR; FXD; 11K1% .125W F TUBULAR RESISTOR; FXD; 14.7K1% .125W F TUBULAR RESISTOR; FXD; 8.25K1% .125W F TUBULAR RESISTOR; FXD; 7.5K1% .125W F TUBULAR RESISTOR; FXD; 6.81K1% .125W F TUBULAR	24546 16299 24546 24546 24546	C4-1/8-T0-1102-F C4-1/8-T0-1472-F C4-1/8-T0-8251-F C4-1/8-T0-7501-F C4-1/8-T0-6811-F
A7R49 A7R50 A7R51 A7R52 A7R53	0757-0290 0757-0200 0757-0438 0698-3155 0757-0200	4	RESISTOR; FXD; 6.19K1X .125W F TUBULAR RESISTOR; FXD; 5.62K1X .125W F TUBULAR RESISTOR; FXD; 5.11K1X .125W F TUBULAR RESISTOR; FXD; 4.64K1X .125W F TUBULAR RESISTOR; FXD; 5.62K1X .125W F TUBULAR	30983 24546 24546 16299 24546	MF4C1/8-T0-6191-F C4-1/8-T0-5621-F C4-1/8-T0-5111-F C4-1/8-T0-4641-F C4-1/8-T0-4641-F
A7R54 A7R55 A7R56 A7R57 A7R58	0757-0439 0757-0401 0698-3432 0757-0402 0757-0401	1	RESISTOR; FXD; 6.81K1% .125W F TUBULAR RESISTOR; FXD; 100 OHM1% .125W F RESISTOR; FXD; 26.1 OHM1% .125W F RESISTOR; FXD; 110 OHM1% .125W F RESISTOR; FXD; 100 OHM1% .125W F	24546 24546 03888 24546 24546	C4-1/8-T0-6811-F C4-1/8-T0-101-F PME55-1/8-T0-26R1-F C4-1/8-T0-111-F C4-1/8-T0-101-F
A7R59 A7R60 A7R61 A7R62 A7R63	0757-0400 0757-0399 0757-0398 0757-0397 0757-0276	3 6 1	RESISTOR; FXD; 90.9 OHM1% .125W F RESISTOR; FXD; 82.5 OHM1% .125W F RESISTOR; FXD; 75 OHM1% .125W F TUBULAR RESISTOR; FXD; 68.1 OHM1% .125W F RESISTOR; FXD; 61.9 OHM1% .125W F	24546 24546 24546 24546 24546 24546	C4-1/8-T0-90R9-F C4-1/8-T0-82R5-F C4-1/8-T0-75R0-F C4-1/8-T0-68R1-F C4-1/8-T0-6192-F
A7R64 A7R65 A7R66 A7R67-59	0757-0395 0757-0394 0757-0401	6 9	RESISTOR; FXD; 56.2 OHM1% .125W F RESISTOR; FXD; 51.1 OHM1% .125W F RESISTOR; FXD; 100 OHM1% .125W F NOT ASSIGNED	24546 24546 24546	C4-1/8-T0-56R2-F C4-1/8-T0-51R1-F C4-1/8-T0-101-F
A7R70 A7R71 A7R72 A7R73 A7R74	0698-3150 0757-0424 0698-3450 0698-3450 0698-3150	6 1	RESISTOR; FXD; 2.37K1X .125W F TUBULAR RESISTOR; FXD; 1.1K1X .125W F TUBULAR RESISTOR; FXD; 42.2K1X .125W F TUBULAR RESISTOR; FXD; 42.2K1X .125W F TUBULAR RESISTOR; FXD; 2.37K1X .125W F TUBULAR	16299 24546 16299 16299 16299	C4-1/8-T0-2371-F C4-1/8-T0-1101-F C4-1/8-T0-4222-F C4-1/8-T0-4222-F C4-1/8-T0-2371-F
A7R75 A7R76 A7R77 A7R78 A7R78 A7R79	0757-0420 0757-0441 0757-0438 0757-0346 0757-0416		RESISTOR; FXD; 750 0HM1% .125W F RESISTOR; FXD; 8.25K1% .125W F TUBULAR RESISTOR; FXD; 5.11K1% .125W F TUBULAR RESISTOR; FXD; 10 0HM1% .125W F TUBULAR RESISTOR; FXD; 511 0HM1% .125W F	24546 24546 24546 24546 24546 24546	C4-1/8-T0-751-F C4-1/8-T0-8251-F C4-1/8-T0-5111-F C4-1/8-T0-10R0-F C4-1/8-T0-511R-F

``}

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
47TP1 A7TP2 A7TP3 A7TP4 A7TV1	0360-1514 0360-1514 0360-1514 0360-1514 1826-0013	2	TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD IC;LIN;OPERATIONAL AMPLIFIER	28480 28480 28480 28480 28480 28480	0360-1514 0360-1514 0360-1514 0360-1514 1826-0013
A7U2 A7U3 A7VP1 A7VP2	1820-0125 1820-0175 1902-0049 1902-3182	1 1 5 2	IC;DGTL;COMPARATOR (ANALOG) IC;DGTL;INVERTER DIODE; ZENER; 6.19V VZ; .4W MAX PD DIODE; ZENER; 12.1V VZ; .4W MAX PD	07263 01295 28480 04713	711HC SN7405N 1902-0049 SZ 10939-206
A 8	08640-60115	1	COUNTER/LOCK ASSY	28480	08649-60115
A8C1	0160-2049	16	CAPACITOR:FXD: .005UF+80-20% 500WVDC	28480	0160-2049
A8C2 A8C3 A8C4 A8C5 A8C5	0160-2049 0160-2049 0160-2049 0160-2357 0160-2357	2	CAPACITOR;FXD; .005UF+80-20% 500HVDC CAPACITOR;FXD; .005UF+80-20% 500HVDC CAPACITOR;FXD; .005UF+80-20% 500HVDC CAPACITOR;FXD; .001UF+80-20% 500HVDC CAPACITOR;FXD; .001UF+80-20% 500HVDC	28480 28480 28480 28480 28480 28480	0160-2049 0160-2049 0160-2049 0160-2357 0160-2357
A8FL1 A8FL2 A8FL3 A8FL4 A8FL4	0160-0204 0160-0204 0160-0204 0160-0204 9100-2232	7 5	CAPACITOR;FXD; .0055UF+-0% 200WVDC CAPACITOR;FXD; .0055UF+-0% 200WVDC CAPACITOR;FXD; .0055UF+-0% 200WVDC CAPACITOR;FXD; .0055UF+-0% 200WVDC COIL, FXD, MOLDED RF CHOKE, .56UH 10%	01121 01121 01121 01121 24226	SMFB-A2 SMFB-A2 SMFB-A2 SMFB-A2 15/560
A8L2 A8L3 A8L4 A8L4 A8L5 A8MP1	9100-2232 9100-2232 9100-2232 9100-2232 1200-0081	2	COIL, FXD, MOLDED RF CHOKE, .56UH 10% COIL, FXD, MOLDED RF CHOKE, .56UH 10% COIL, FXD, MOLDED RF CHOKE, .56UH 10% COIL, FXD, MOLDED RF CHOKE, .56UH 10% INSULATOR, BSHG,FLG, .115 ID	24226 24226 24226 24226 26365	15/560 15/560 15/560 15/560 974-307
48MP2 48MP3 48MP4 48MP5 48MP5	2190-0027 3050-0443 8160-0219 8160-0220 08640-00001	1 2 1 1	WASHER; LOCK; INT; 1/4 .256 ID .478 OD WASHER; FLAT; 8 .176 ID .375 OD GASKET MATL;RFI; FL STRP/SH NICKEL GASKET MATL;RFI; FL STRP/SH NICKEL SHIELD:LED TAPE	78189 86928 28480 28480 28480 28480	1914-00 5624-16-10 8160-0219 8160-0220 08640-00001
A8MP7 A8MP8 A8MP9 A8MP10 A8MP11	08640-00009 08640-00051 08640-00052 08640-20059 08640-20060	1 1 1 1	COVER:CENTER FILTER FRAME C SHIELD, LARGE FRAME C SHIELD, SMALL COVER:CONTROL INPUT HEAT SINK	28480 28480 28480 28480 28480 28480	08640-00009 08640-00051 08640-00052 08640-20059 08640-20060
A8MP12	08640-20063	1	WINDOW COUNTER	28480	08640-20063
A8MP13 A8MP14 A8MP15	08640-20089 08640-20092 08640-20202	2 1 1	SUPPORT:PC BOARD, CENTER Shield:Button Casting:Top	28480 28480 28480	08640-20089 08640-20092 08649-20202
A8MP16 A8MP17 A8MP18 A8MP19 A8MP20	08640-20203 08640-40003 08640-40041 5040-0391 5040-0392	1 1 1 1	CASTING:BOTTOM PIPE LIGHT PIPE LIGHT, OFLOW BUTTON:X10 BUTTON:X100	28480 28480 28480 28480 28480 28480	08640-20203 08640-40003 08640-40041 5040-0391 5040-0392
A8MP21 A8MP22 A8MP23 A8MP24 A8MP25	5040-0393 5040-0394 5040-0395 2190-0368 2190-0019	1 1 2 2	BUTTON-ON BUTTON-INT BUTTON-EXT WASHER; FLAT; 5 .13 ID .235 OD WASHER; LOCK; HELICAL; 4 .115 ID .226	28480 28480 28480 28480 28480 . 28480	5040-0393 5040-0394 5040-0395 2190-0368 2190-0019
48MP26 48MP27 48MP28 48MP29 48MP29	2200-0147 2200-0107 2200-0151 2190-0005 2950-0006	14 8 2 2 1	SCREW;MACHINE; 4-40 UNC-2A .5 IN PAN SCREW;MACHINE; 4-40 UNC-2A .375 IN PAN SCREW;MACHINE; 4-40 UNC-2A .75 IN PAN WASHER; LOCK; EXT; 4 .116 ID .285 OD NUT, HEX 1/4-32 .094 X .375, BRS, NI PL	28480 28480 28480 78189 73734	2200-0107 2200-0151 1804-01
A8MP31 A8MP32 A8MP33 A8MP34 A8MP35	2200-0140 08640-00058 2200-0105 0520-0127 2190-0014	7 2 33 4 4	SCREW;MACHINE; 4-40 UNC-2A .25 IN 100 INSULATOR:COUNTER SCREW;MACHINE; 4-40 UNC-2A .312 IN PAN SCREW;MACHINE; 2-56 UNC-2A .188 IN PAN WASHER; LOCK; INT; 2 .089 ID .185 DD	28480 28480 28480 28480 78189	08640-00058 2200-0105 0520-0127
A8MP36 A8MP37 A8MP38 A8MP39 A8MP43	0516-0005 2200-0103 2200-0155 0361-0207 2200-0504	2 7 5 3 4	SCREW;MACHINE; D-80 UNF-2A .188 IN PAN SCREW;MACHINE; 4-40 UNC-2A .25 IN PAN SCREW;MACHINE; 4-40 UNC-2A 1 IN PAN RIVET:BLIND, BLACK NYLON 0.125" DIA SCREW;MACHINE; 4-40 UNC-2A 1.062 IN PAN	28480 28480 28480 00000 28480	2200-0103 2200-0155 0BD
A8MP41 A8MP42 A8MP43 A8MP44 A8MP45	08640-40007 2190-0012 2190-0057 2680-0128 08640-20088	1 2 4 1 3	KNOB:TIME BASE WASHER: LOCK; EXT: 10 .195 ID .406 OD WASHER: LOCK; INT: 12 .218 ID .383 OD SCREW:MACHINE: 10-32 UNF-2A .25 IN PAN HEAT SINK NUT	28480 78189 78189 28480 28480	1810-00 1912-03 2680-0128

(

Table	6-3.	Replacea	ble	e Parts
-------	------	----------	-----	---------

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A8U1 A8U2 A8U2 A8U4 A8U5 A8U6	1990-0330 1990-0330 1990-0330 1990-0330 1990-0330 1990-0330		PHOTO-DEVICE, DSPL NUM 990MW PD PHOTO-DEVICE, DSPL NUM 990MW PD	28480 28480 28480 28480 28480 28480 28480 28480	1990-0330 1990-0330 1990-0330 1990-0330 1990-0330 1990-0330
ABA1 🕇 A8A1	08640-60168 08640-60083	1	R F SCALER ASSY REBUILT 08640-60168, REQUIRES EXCHANGE	28480 28480	08640-69168 08640-60083
ABA1C1 ABA1C2 ABA1C3 ABA1C4 ABA1C5 ABA1C6 ABA1C7 ABA1C7 ABA1C7	0180-0197 0180-0197 0160-3879 0160-3879 0160-3879 0160-3879 0160-2204 1901-0050 1901-0050	9	CAPACITOR-FXD, 2-2UF+-10% 20VDC TA CAPACITOR-FXD, 2-2UF+-10% 20VDC TA CAPACITOR;FXD; .01UF+-20% 100WVDC CAPACITOR;FXD; .01UF+-20% 100WVDC CAPACITOR;FXD; .01UF+-20% 100WVDC CAPACITOR;FXD; .01UF+-20% 100WVDC CAPACITOR;FXD; .01UF+-20% 100WVDC CAPACITOR;FXD; .01UF+-5% 300WVDC DIODE; SWITCHING;SI ; 80V MAX VRM 200MA DIODE; SWITCHING;SI ; 80V MAX VRM 200MA	56289 56289 28480 28480 28480 28480 28480 28480 28480 28480	150D225X9020A2 150D225X9020A2 0160-3879 0160-3879 0160-3879 0160-3879 0160-2204 1901-0050 1901-0050
A8A1CR2 A8A1CR3 A8A1J1 A8A1J2 A8A1K1 A8A1K1	1901-0050 1250-1220 1250-1220 0490-1073 0490-1073	6	DIDDE; SWITCHING;SI ; 80V MAX VRM 200MA CONNECTOR-CDAX, SMC, 50 DHM MALE CONNECTOR-CDAX, SMC, 50 DHM MALE Relay; Reed; 1A .25A 120V CONT; 4.5V Relay; Reed; 1A .25A 120V CONT; 4.5V	28480 98291 98291 28480 28480	1901-0050 50-051-0109 50-051-0109 0490-1073 0490-1073
A8A1MP1 A8A1MP2 A8A1MP3 A8A1MP4 A8A1Q1 A8A1Q2 A8A1R1	08640-20088 0360-0124 0360-0124 0361-0036 1854-0404 1854-0404 0698-7236	2 1 2	HEAT SINK NUT TERMINAL:SOLDER LUG TERMINAL:SOLDER LUG RIVET:SEMITUBULAR 0.89" BODY DIA TRANSISTOR NPN SI PD=360MW FT=200MHZ TRANSISTOR NPN SI PD=350MW FT=200MHZ RESISTOR; FXD; 1K2% .05W F TUBULAR	28480 28480 28480 00009 28480 28480 28480 24546	08640-20088 0360-0124 0360-0124 080 1854-0404 1854-0404 C3-1/8-T0-1001-6
ABA1R 2, 3 ABA1R 4 ABA1R 5 ABA1R 5 ABA1R 6	0698-7248 0698-7248 0698-7212	4	NOT ASSIGNED Resistor; FXD; 3.16K2X .05W F TUBULAR Resistor; FXD; 3.16K2X .05W F TUBULAR Resistor; FXD; 100.0HM2X .05W F TUBULAR	24546 24546 24546	C3-1/8-T0-3161-G C3-1/8-T0-3161-G C3-1/8-T0-100R-G
A8A1R7 A8A1R8 A8A1R9 A8A1R10 A8A1R11	0757-0394 0757-0416 0757-0416 0757-1094 0757-094	. 2	RESISTOR; FXD; 51.1 OHM13 .125W F RESISTOR; FXD; 511 OHM13 .125W F RESISTOR; FXD; 511 OHM13 .125W F RESISTOR; FXD; 1.47K13 .125W F TUBULAR RESISTOR; FXD; 511 OHM13 .125W F	24546 24546 24546 24546 24546 24546	C4-1/8-T0-511R-F C4-1/8-T0-1471-F
ABA1U1 ABA1U2 ABA1U3 ABA1U4 ABA1U5	1820-0736 1820-1003 1820-0145 1820-0102 5086-7089	3 1 6 6 1	IC;DGTL;COUNTER IC;DGTL;COUNTER INTEGRATED CIRCUIT, DGTL, ECL QUAD 2 INTEGRATED CIRCUIT, DGTL, ECL J-K FLIP TRIGGER AMPLIFIER	28480 28480 04713 04713 28480	1820-1003 Mc1010P Mc1013P
ABA2 ABA2	08640~60027 08640~60087	1	COUNTER/LOCK BOARD ASSY Rebuilt 08640-60027, Requires exchange	28480 28480	
A8A2C1 A8A2C2 A8A2C3 A8A2C3	0160-3456 0160-3094 0160-3094 0180-0049	30 19 1	CAPACITOR;FXD; .001UF+-10% 1000WVDC CAPACITOR;FXD; .1UF+-10% 100WVDC CAPACITOR;FXD; .1UF+-10% 100WVDC CAPACITOR-FXD; 20UF+75-10% 50VDC AL	28480 28480 28480 56289	0 0160-3094 0 0160-3094 0 30D206G050CC2
A8A2C5 A8A2C6 A8A2C7 A8A2C8 A8A2C9	0180-1735 0180-0197 0160-3456 0180-0228 0180-0228		CAPACITOR-FXD, .22UF+-10% 35VDC TA CAPACITOR-FXD, 2.2UF+-10% 20VDC TA CAPACITOR;FXD; .001UF+-10% 1000WVDC CAPACITOR-FXD, 22UF+-10% 15VDC TA-SOLID CAPACITOR-FXD, 22UF+-10% 15VDC TA-SOLID	5628 5628 28480 5628 5628	9 150D225X9020A2 0 0160-3456 9 150D226X9015B2
A8A2C10 + A8A2C11 + A8A2C12 + A8A2C13 A8A2C14	0160-3455 0160-3455 0160-3466 0160-2207 0160-3877	3 1 1 3	CAPACITOR;FXD; 470PF+-107 1000WVDC CAPACITOR;FXD; 470PF+-107 1000WVDC CAPACITOR;FXD; 100PF+-10% 250WVDC CAPACITOR;FXD; 300PF+-5% 300WVDC CAPACITOR;FXD; 100PF+-20% 200WVDC	2848 2848 2848 2848 2848 2848	0 0160-3455 0 0160-3466 0 0160-2207 0 0160-3877
A8A2C15 A8A2C16 A8A2C17 A8A2C18 A8A2C19	0160-3879 0160-3879 0160-0174 0160-3094 0160-2201	4	CAPACITOR; FXD; .1UF+-10% 100WVDC	2848 2848 2848 2848 2848 2848	0 0160-3879 9 0160-0174 0 0160-3094
ABA2C20 ABA2C20 ABA2C21 ABA2C22 ABA2C23 ABA2C24	0180-0291 0180-0197 0160-3879 0180-0197 0160-2055	11	CAPACITOR-FXD, 1UF+-10% 35VDC TA-SOLID CAPACITOR-FXD, 2.2UF+-10% 20VDC TA CAPACITOR:FXD; .01UF+-20% 100WVDC CAPACITOR-FXD, 2.2UF+-10% 20VOC TA CAPACITOR,FXD, .01UF+80-20% 100WVDC	5628 5628 2848 5628 2848	9 150D225X9020A2 0 0160-3879 9 150D225X9020A2

See introduction to this section for ordering information † SEE TABLES 7-1 AND 7-2, FOR BACKDATING.

,

2 - A - A -

~

)

Table 6-3. Replaceable Parts

Reference Designation	IP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A8A2C25 A8A2C26 A8A2C27 A8A2C27 A8A2C28 A8A2C29	0160-2055 0160-2055 0160-2204 0160-3876 0160-3876	3	CAPACITOR,FXD, 01UF+80-20% 100WVDC CAPACITOR,FXD, 01UF+80-20% 100WVDC CAPACITOR,FXD; 100PF+-5% 300WVDC CAPACITOR;FXD; 47PF+-20% 200WVDC CAPACITOR;FXD; 47PF+-20% 200WVDC	28480 28480 28480 28480 28480 28480	0160-2055 0160-2055 0169-2204 0169-3876 0160-3876
A8A2C30 A8A2CR1 A8A2CR2 A8A2L1 A8A2L2	0160-3876 1901-0040 1901-0040 9100-1622 9100-1620	1 15	CAPACITOR;FXD; 47PF+-20% 200WVDC DIODE; SWITCHING;SI ; 30V MAX VRM 50MA DIODE; SWITCHING;SI ; 30V MAX VRM 50MA COIL; FXD; MOLDED RF CHOKE; 24UH 5% COIL, FXD; MOLDED RF CHOKE, 15UH 10%	28480 28480 28480 24226 24226	0160-3876 1991-0049 1901-0040 15/242 15/152
A8A201 A8A2Q2 A8A2Q3 A8A2Q4 A8A2Q4 A8A2Q5	1854-0071 1853-0020 1853-0020 1854-0071 1854-0071		TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ	28480 28480 28480 28480 28480 28480	1854-0071 1853-0020 1853-0020 1854-0071 1854-0071
A8A2Q6 A8A2Q7 A8A2Q8 A8A2Q9 A8A2Q9 A8A2Q10	1855-0062 1853-0020 1854-0071 1854-0071 1854-0071	2	TRANSISTOR, JFET N-CHAN D-MODE SI TRANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ	28480 28480 28480 28480 28480 28480	1855-0062 1853-0020 1854-0071 1854-0071 1854-0071
A8A2Q11 A8A2Q12 A8A2Q13 A8A2Q14 A8A2Q15	1854-0071 1854-0071 1853-0020 1854-0071 1854-0071		TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ	28480 28480 28480 28480 28480 28480	1854-0071 1854-0071 1853-0020 1854-0071 1854-0071
A8A2Q16 A8A2Q17 A8A2Q18 A8A2R1 A8A2R2	1853-0020 1853-0020 1854-0071 0698-3440 0757-0438		TRANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ RESISTOR; FXD; 196 0HM1% .125W F RESISTOR; FXD; 5.11K1% .125W F TUBULAR	28480 28480 28480 16299 24546	1853-0020 1853-0020 1854-0071 C4-1/8-T0-196R-F C4-1/8-T0-5111-F
A8A2R3 A8A2R4 A8A2R5 A8A2R6 A8A2R7	0698-7253 0698-7253 0698-7239 0698-7239 0698-7239	6 2 4	RESISTOR; FXD; 5.11K2% .05W F TUBULAR RESISTOR; FXD; 5.11K2% .05W F TUBULAR RESISTOR; FXD; 1.33K2% .05W F TUBULAR RESISTOR; FXD; 1.33K2% .05W F TUBULAR RESISTOR; FXD; 2.61K2% .05W F TUBULAR	24546 24546 24546 24546 24546	C3-1/8-T0-5111-G C3-1/8-T0-5111-G C3-1/8-T0-1331-G C3-1/8-T0-1331-G C3-1/8-T0-2611-G
A8A2R8 A8A2R9 A8A2R10 A8A2R11 A8A2R12	0698-7246 0698-7277 0698-7277 0683-8245 0683-8245	5 2	RESISTOR; FXD; 2.61K2% .05W F TÜBULAR RESISTOR; FXD; 51.1K2% .05W F TUBULAR RESISTOR; FXD; 51.1K2% .05W F TUBULAR RESISTOR; FXD; 820K5% .25W CC TUBULAR RESISTOR; FXD; 820K5% .25W CC TUBULAR	24546 24546 24546 01121 01121	C3-1/8-T0-2611-G C3-1/8-T0-5112-G C3-1/8-T0-5112-G C88245 C88245 C88245
A6A2R13 A8A2R14 A8A2R15 A8A2R16 A8A2R17	0698-7267 0698-7272 0698-7277 0698-7267 0698-7284	2 1 3	RESISTOR; FXD; 19.6K2% .05W F TUBULAR RESISTOR; FXD; 31.6K2% .05W F TUBULAR RESISTOR; FXD; 51.1K2% .05W F TUBULAR RESISTOR; FXD; 19.6K2% .05W F TUBULAR RESISTOR; FXD; 100K2% .05W F TUBULAR	24546 24546 24546 24546 24546 24546	C3-1/8-T0-1962-G C3-1/8-T0-3162-G C3-1/8-T0-5112-G C3-1/8-T0-5112-G C3-1/8-T0-1962-G C3-1/8-T0-1003-G
A8A2R18 A8A2R19 A8A2R20 A8A2R21 A8A2R22	0698-7284 0698-7277 0698-7288 0698-7253 0698-7253	1	RESISTOR; FXD; 100K2% .05W F TUBULAR RESISTOR; FXD; 51.1K2% .05W F TUBULAR RESISTOR; FXD; 147K2% .05W F TUBULAR RESISTOR; FXD; 5.11K2% .05W F TUBULAR RESISTOR; FXD; 5.11K2% .05W F TUBULAR	24546 24546 24546 24546 24546 24546	C3-1/8-T0-1003-G C3-1/8-T0-5112-G C3-1/8-T0-1473-G C3-1/8-T0-5111-G C3-1/8-T0-5111-G
A8A2R23 A8A2R24 A8A2R25 A8A2R26 A8A2R26 A8A2R27	0698-7277 0698-7260 0698-7284 0698-3453 0698-7260	7 · 6	RESISTOR; FXD; 51.1K2%.05W F TUBULAR RESISTOR; FXD; 10K2%.05W F TUBULAR RESISTOR; FXD; 10K2%.05W F TUBULAR RESISTOR; FXD; 10K2%.05W F TUBULAR RESISTOR; FXD; 10K2%.05W F TUBULAR	24546 24546 24546 16299 24546	C3-1/8-T0-5112-G C3-1/8-T0-1002-G C3-1/8-T0-1003-G C4-1/8-T0-1963-F C3-1/8-T0-1902-G
A8A2R28 A8A2R29 A8A2R30 A8A2R31 A8A2R32	0698-7260 0698-7256 0698-7258 0698-7260 0698-7260	1 1	RESISTOR; FXD; 10K23 .05W F TUBULAR RESISTOR; FXD; 6.81K23 .05W F TUBULAR RESISTOR; FXD; 8.25K23 .05W F TUBULAR RESISTOR; FXD; 10K23 .05W F TUBULAR RESISTOR; FXD; 10K23 .05W F TUBULAR	24546 24546 24546 24546 24546 24546	C3-1/8-T0-1002-G C3-1/8-T0-6811-G C3-1/8-T0-8251-G C3-1/8-T0-1002-G C3-1/8-T0-1002-G
ABA2R33 ABA2R34 ABA2R35 ABA2R35 ABA2R37	0698-7264 0698-7243 0698-7229 0757-0442 0757-0416	1 1 6	RESISTOR; FXD; 14.7K2% .05W F TUBULAR RESISTOR; FXD; 1.96K2% .05W F TUBULAR RESISTOR; FXD; 511 OHM2% .05W F TUBULAR RESISTOR; FXD; 511 OHM2% .05W F TUBULAR RESISTOR; FXD; 511 OHM1% .125W F	24546 24546 24546 24546 24546	C3-1/8-T0-1472-G C3-1/8-T0-1961-G C3-1/8-T0-511R-G C4-1/8-T0-1002-F C4-1/8-T0-511R-F
A8A2R38 A8A2R39 A8A2R40 A8A2R41 A8A2R42	0698-3442 0757-0442 0757-0442 0757-0442 0698-0083	1	RESISTOR; FXD; 237 OHM1X .125W F RESISTOR; FXD; 10K1X .125W F TUBULAR RESISTOR; FXD; 3.16K1X .125W F TUBULAR RESISTOR; FXD; 1.96K1X .125W F TUBULAR RESISTOR; FXD; 1.96K1X .125W F TUBULAR	16299 24546 24546 24546 24546 16299	C4-1/8-T0-237R-F C4-1/8-T0-1002-F C4-1/8-T0-3161-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1961-F
A8A2R43 A8A2R44 A8A2R45 A8A2R45	0698-0083 0698-0083 0757-0416		RESISTOR; FXD; 1.96K1% .125W F TUBULAR RESISTOR; FXD; 1.96K1% .125W F TUBULAR RESISTOR; FXD; 511 OHM1% .125W F NOT ASSIGNED	16299 16299 24546	C4-1/8-TD-1961-F C4-1/8-TD-1961-F C4-1/8-TD-511R-F
ABA2R47	0757-0416		RESISTOR; FXD; 511 OHM1% .125W F	24546	. C4-1/8-T0-511R-F

.

Q

¢

.

Table 6-3.	Replaceable Parts
------------	-------------------

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
Designation					
A8A2R48 A8A2R49 A8A2R50 A8A2R51 A8A2R51 A8A2R52	0698-7229 0757-0280 0698-7248 0698-7248		NOT ASSIGNED RESISTOR; FXD; 511 DHM2% .05W F TUBULAR RESISTOR; FXD; 1K1% .125W F TUBULAR RESISTOR; FXD; 3.16K2% .05W F TUBULAR RESISTOR; FXD; 3.16K2% .05W F TUBULAR	24546 24546 24546 24546	C3-1/8-T0-511R-G C4-1/8-T0-1001-F C3-1/8-T0-3161-G C3-1/8-T0-3161-G
A8A2R53 A8A2R54 A8A2R55 A8A2R55 A8A2R56	0698-7229 0698-7229 0698-7236 0811-1662 0698-7219	1 3	RESISTOR; FXD; 511 OHM2% .05W F TUBULAR RESISTOR; FXD; 511 OHM2% .05W F TUBULAR RESISTOR; FXD; 1K2% .05W F TUBULAR RESISTOR; FXD; 47 OHM5% 2W PW TUBULAR RESISTOR; FXD; 196 OHM2% .05W F TUBULAR	24546 24546 24546 75042 24546	C3-1/8-T0-511R-6 C3-1/8-T0-511R-6 C3-1/8-T0-1001-6 BWH2-47/100-J C3-1/8-T0-196R-G
A8A2S1 A A8A2S1 B A8A2S1 C A8A2TP1 A8A2TP2	3101-1729 0360-1514 0360-1514	1	SWITCH, PB -STA DPDT(INCL A8A2SIA,B,C) N.S.R PART OF A8A2SIA N.S.R PART OF A8A2SIA TERMINAL, SLOR STUD TERMINAL, SLOR STUD	28480 28480 28480	3101-1729 0360-1514 0360-1514
A8A2TP3 A8A2TP4 A8A2TP5 A8A2TP6	0360-1514 0360-1514 0360-1514 0360-1514 1820-0077	4	TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD IC;DGTL;FLIP-FLOP	28480 28480 28480 28480 28480 01295	0360-1514 0360-1514 0360-1514 0360-1514 SN7474N
ABA 2U1 ABA 2U2 ABA2U3 ABA2U4 ABA2U5 ABA2U5	1820-0054 1820-0054 1820-0054 1820-0174 1820-0077 1820-0328	2	IC;DGTL;GATE IC;DGTL;GATE IC;DGTL;INVERTER IC;DGTL;FLIP-FLOP IC;DGTL;GATE	01295 01295 01295 01295 01295 01295	SN7400N SN7400N SN7404N SN7474N SN7474N SN7402N
A8A2U7 A8A2U8 A8A2U9 A8A2U10 A8A2U11	1820-0701 1820-0701 1820-0701 1820-0701 1820-0701	6	IC;DGTL;LATCH IC;DGTL;LATCH IC;DGTL;LATCH IC;DGTL;LATCH IC;DGTL;LATCH IC;DGTL;LATCH	07263 07263 07263 07263 07263	93L14DC 93L14DC 93L14DC 93L14DC 93L14DC 93L14DC
ABA2U12 ABA2U13 ABA2U13 ABA2U14 ABA2U15 ABA2U16	1820-0701 1820-0511 1820-0661 1820-0054 1820-0054	3	IC;DGTL;LATCH IC;DGTL;GATE IC:DGTL;GATE IC:DGTL;GATE IC:DGTL;GATE IC:DGTL;GATE	07263 01295 01295 01295 01295	93L14DC SN7408N SN7432N SN7400N SN7400N
A8A2U17 A8A2U18 A8A2U19 A8A2U20	1820-0511 1820-0511 1820-0546 1820-0546 1820-0546	7	IC;DGTL;GATE IC;DGTL;GATE IC;DGTL;COUNTER IC;DGTL;COUNTER IC;DGTL;COUNTER IC;DGTL;COUNTER	01295 01295 01295 01295 01295 01295	SN7408N SN7408N SN74192N SN74192N SN74192N SN74192N
A8A2U21 A8A2U22 A8A2U23 A8A2U24 A8A2U25	1820-0546 1820-0546 1820-0546 1820-0546 1820-0328 1820-0077		IC;DGTL;COUNTER IC;DGTL;COUNTER IC;DGTL;COUNTER IC;DGTL;GATE IC;DGTL;FLIP-FLOP	01295 01295 01295 01295 01295 01295	SN74192N SN74192N SN74192N SN7402N SN7474N
A8A2U26 A8A2U27 A8A2U28 A8A2U29 A8A2V29 A8A2VR1 A8A2VR2	1820-0015 1820-0546 1826-0092 1902-3070 1902-3182	1 2 1	INTEGRATED CIRCUIT, DGTL, TTL QUAD 2 IC;DGTL;COUNTER IC;LIN;OPERATIONAL AMPLIFIER DIODE; ZENER; 4.22V VZ; .4W MAX PD DIODE; ZENER; 12.1V VZ; .4W MAX PD	04713 01295 02735 04713 04713	SN74192N CA3458T SZ 10939-74
8883 8883	08640-60026 08640-60090	1	TIME BASE ASSY Rebuilt 08640-60026, requires exchange	28480 28480	
A8A3C1 A8A3C2 A8A3C3 A8A3C4 A8A3C5 A8A3C5	0160-3094 0160-3094 0160-3094 0160-3094 0160-3094 0160-3094		CAPACITOR;FXD; .1UF+-103 100WVDC CAPACITOR;FXD; .1UF+-103 100WVDC CAPACITOR;FXD; .1UF+-103 100WVDC CAPACITOR;FXD; .1UF+-103 100WVDC CAPACITOR;FXD; .1UF+-103 100WVDC CAPACITOR;FXD; .1UF+-103 100WVDC	28480 28480 28480 28480 28480 28480 28480	0 0160-3094 0 0160-3094 0 0160-3094 0 160-3094 0 160-3094
A8A3C7 A8A3C8 A8A3C9 A8A3C10	0160-2055 0160-2055 0160-2055		NOT ASSIGNED CAPACITOR,FXD, .01UF+80-20% 100WVDC CAPACITOR,FXD, .01UF+80-20% 100WVDC CAPACITOR,FXD, .01UF+80-20% 100WVDC	28480 28480 28480	0 0160-2055 0 0160-2055
A8A3C11 A8A3C12 A8A3C13 A8A3C14 A8A3C14	0160-2055 0160-2055 0160-2055 0160-2055 0160-3094 0160-3879		CAPACITOR, FXD, .01UF+80-20% 100WVDC CAPACITOR, FXD, .01UF+80-20% 100WVDC CAPACITOR, FXD, .01UF+80-20% 100WVDC CAPACITOR; FXD; .1UF+10% 100WVDC CAPACITOR; FXD; .01UF+-20% 100WVDC	2848 2848 2848 2848 2848 2848	0 0160-2055 0 0160-2055 0 0160-3094
A8A3C16 A8A3C17 A8A3C17 A8A3C18 A8A3C19 A8A3C20	0160-2055 0160-3094 0160-2055 0160-3879 0160-3879		CAPACITOR, FXD, .01UF+80-20% 100MVDC CAPACITOR; FXD; .1UF+-10% 100MVDC CAPACITOR, FXD, .01UF+80-20% 100MVDC CAPACITOR; FXD; .01UF+-20% 100MVDC CAPACITOR; FXD; .01UF+-20% 100MVDC	2848 2848 2848 2848 2848 2848	0 0160-3094 0 0160-2055 0 0160-3879

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Numbe
A843C21 A843C22 A843C23 A843C24 A843C24 A843C25	0160-3877 0160-3877 0160-3457 0160-3456 0160-3494	1	CAPACITOR;FXD; 100PF+-20% 200WVDC CAPACITOR;FXD; 100PF+-20% 200WVDC CAPACITOR,FXD; .002UF+-10% 250WVDC CAPACITOR;FXD; .001UF+-10% 1000WVDC CAPACITOR;FXD; .1UF+-10% 100WVDC	28480 28480 28480 28480 28480 28480	0160-3877 0160-3877 0160-3457 0160-3456 0160-3094
A8A3C26 A8A3C27 A8A3C28 A8A3C29	0160-2055 0180-0197 0180-0197 0180-0197 0180-0197		CAPACITOR,FXD, .01UF+80-20% 100WVDC CAPACITOR-FXD, 2.2UF+-10% 20VOC TA CAPACITOR-FXD, 2.2UF+-10% 20VDC TA CAPACITOR-FXD, 2.2UF+-10% 20VDC TA	28480 56289 56289 56289	0160-2055 150D225X9020A2 150D225X9020A2 150D225X9020A2
ABA3C30 ABA3C31 ABA3C32 ABA3C33 ABA3C33 ABA3C34	0180-0197 0180-0197 0160-3094 0160-2055 0180-0197		CAPACITOR-FXD, 2.2UF+-10₹ 20VDC TA CAPACITOR-FXD, 2.2UF+-10₹ 20VDC TA CAPACITOR;FXD; .1UF+-10₹ 100WVDC CAPACITOR;FXD, 01UF+80-20₹ 100WVDC CAPACITOR-FXD, 2.2UF+-10₹ 20VDC TA	56289 56289 28480 28480 56289	150D225X9020A2 150D225X9020A2 0160-3094 0160-2055 150D225X9020A2
A8A3C35 A8A3C36 A8A3C37 A8A3C38 A8A3C39	0180-0197 0180-0197 0180-0197 0160-2055 0180-0197		CAPACITOR-FXD, 2.2UF→10% 20VDC TA CAPACITOR-FXD, 2.2UF→10% 20VDC TA CAPACITOR-FXD, 2.2UF→10% 20VDC TA CAPACITOR,FXD, .01UF+80-20% 100WVDC CAPACITOR-FXD, 2.2UF→10% 20VDC TA	56289 56289 56289 28480 56289	150D225X9020A2 150D225X9020A2 150D225X9020A2 0160-2055 150D225X9020A2
A8A3C40 A8A3CR1 A8A3J1	0160-3456 1901-0040 1250-1383	1	CAPACITOR;FXD; .001UF+-10% 1000WVDC DIODE; Switching;SI; 30V Max VRM 50MA Connector-Coax, SM SNP, 50 DHM Male	28480 28480 28480	0160-3456 1901-0040 1250-1383
A843L1	9140-0137	11	COIL; FXD; MOLDED RF CHOKE; 1MH 5%	24226	19/104
A8A3L2 A8A3L3 A8A3L4 A8A3L5 A8A3L5 A8A3L6	9140-0137 9140-0137 9140-0137 9140-0137 9140-0137 9140-0137		COIL; FXD; MOLDED RF CHOKE; 1MH 5% COIL; FXD; MOLDED RF CHOKE; 1MH 5%	24226 24226 24226 24226 24226 24226	19/104 19/104 19/104 19/104 19/104 19/104
A8A3L7 A8A3L8 A8A3L9 A8A3L10 A8A3L11	9140-0137 9140-0137 9140-0137 08640-80001 9140-0137	8	COIL; FXD; MOLDED RF CHOKE; 1MH 5% COIL; FXD; MOLDED RF CHOKE; 1MH 5% COIL; FXD; MOLDED RF CHOKE; 1MH 5% TORRID FILTER COIL; FXD; MOLDED RF CHOKE; 1MH 5%	24226 24226 24226 28480 24226	19/104 19/104 19/104 08640-80001 19/104
A8A3L12 A8A3L13 A8A3L14 A8A3MP1 A8A3MP2 A8A3MP3	08640-80001 08640-80001 08640-80001 2190-0003 2200-0155 2260-0001	23	TORRID FILTER TORRID FILTER TORRID FILTER WASHER; LOCK; HELICAL; 4 .115 ID .253 SCREW;MACHINE; 4-40 UNC-2A 1 IN PAN NUT, HEX 4-40 .094 X .25, SST, PSVT	28480 28480 28480 28480 28480 28480 80120	08640-80001 08640-80001 08640-80001 2190-0003 2200-0155
A8A3MP4 A8A3MP5 A8A3Q1 A8A3Q2	08640-20211 08640-40040 1854-0019 1854-0019	3 1	GUIDE:CONNECTOR INSULATOR SWITCH TRANSISTOR NPN SI PD=360MW FT=500MHZ TRANSISTOR NPN SI PD=360MW FT=500MHZ	28480 28480 28480 28480	08640-20211 08640-40040 1854-0019 1854-0019
A8A3R1 A8A3R2 A8A3R3 A8A3R3 A8A3R4 A8A3R5	0757-0274 0757-0442 0757-0438 0698-7229	2	NOT ASSIGNED Resistor; fxd; 1.21k1% .125w f tubular Resistor; fxd; 10k1% .125w f tubular Resistor; fxd; 5.11k1% .125w f tubular Resistor; fxd; 511 ohm2% .05w f tubular	24546 24546 24546 24546	C4-1/8-T0-1213-F C4-1/8-T0-1002-F C4-1/8-T0-5111-F C3-1/8-T0-511R-G
A8A3R6 A8A3R7 A8A3R8 A8A3R9 A8A3R9 A8A3R10	0757-0416 0757-0442 0757-0442 0698-0085 0757-0279		RESISTOR; FXD; 511 OHM1% .125W F RESISTOR; FXD; 10K1% .125W F TUBULAR RESISTOR; FXD; 10K1% .125W F TUBULAR RESISTOR; FXD; 2.61K1% .125W F TUBULAR RESISTOR; FXD; 3.16K1% .125W F TUBULAR	24546 24546 24546 16299 - 24546	C4-1/8-T0-511R-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-2611-F C4-1/8-T0-3161-F
A8A3R11 A8A3R12 A8A3R13 A8A3R14 A8A3R15	0757-0416 0757-0416 0757-0438 0757-0438 0757-0438 0757-0438		RESISTOR; FXD; 511 OHM1X .125W F RESISTOR; FXD; 511 OHM1X .125W F RESISTOR; FXD; 5.11K1X .125W F TUBULAR RESISTOR; FXD; 5.11K1X .125W F TUBULAR RESISTOR; FXD; 5.11K1X .125W F TUBULAR	24546 24546 24546 24546 24546 24546	C41/8-TO-511P-F C4-1/8-TO-511R-F C4-1/8-TO-5111-F C4-1/8-TO-5111-F C4-1/8-TO-5111-F C4-1/8-TO-5111-F
A8A3R16 A8A3R17 A8A3R18 A8A3R19 A8A3R19 A8A3R20	0757-0438 0757-0279 0757-0399 0698-3437 0698-3160		RESISTOR; FXD; 5.11K1% .125W F TUBULAR RESISTOR; FXD; 3.16K1% .125W F TUBULAR RESISTOR; FXD; 82.5 OHM1% .125W F RESISTOR; FXD; 133 OHM1% .125W F RESISTOR; FXD; 31.6K1% .125W F TUBULAR	24546 24546 24546 16299 16299	C4-1/8-T0-5111-F C4-1/8-T0-5161-F C4-1/8-T0-82R5-F C4-1/8-T0-133R-F C4-1/8-T0-133R-F C4-1/8-T0-3162-F
A8A3R21 A8A3R22 A8A3R23 A8A3S1A A8A3S1B	0698-3444 0757-0280 0698-3440 3101-1730	1	RESISTOR; FXD; 316 OHMIX .125W F RESISTOR; FXD; 1K1X .125W F TUBULAR RESISTOR; FXD; 196 OHMIX .125W F SWITCH, PB -STA DPDT(INCL A8A3SIA,B,C) N.S.R. PART OF A8A3SIA	16299 24546 16299 28480	C4-1/8-T0-316R-F C4-1/8-T0-1001-F C4-1/8-T0-196R-F 3101-1730
A8A3S1C A8A3TP1 A8A3U1 A8A3U2 A8A3U2 A8A3U2	0360-1514 1820-0054 1820-0077 1820-0268	1	N.S.R. PART OF A8A3S1A TERMINAL, SLDR STUD IC;DGTL;GATE IC;DGTL;FLIP-FLOP IC:DGTL;SHIFT REGISTER	28480 01295 01295 01295 01295	0360–1514 SN7400N SN7474N SN7476N

ł

- (

Table 6-3	. Rep	laceable	Parts
-----------	-------	----------	-------

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A8A3U4 A8A3U5 A8A3U5 A8A3U7 A8A3U8 A8A3U9 A8A3U10 A8A3U10 A8A3U11 A8A3U12 A8A3U13	1820-0511 1820-0661 1820-0661 1820-0174 1820-0054 1820-0600 1820-0600 1820-055 1820-0986	4 1 3	IC;DGTL;GATE IC;DGTL;GATE IC;DGTL;GATE IC;DGTL;GATE IC;DGTL;GATE IC;DGTL;GATE INTEGRATED CIRCUIT, DGTL, TTL DECADE INTEGRATED CIRCUIT, DGTL, TTL DECADE IC;DGTL;CDUNTER INTEGRATED CIRCUIT, DGTL, TTL LP DECADE	01295 01295 01295 01295 01295 01295 27014 27014 01295 27014	SN7408N SN7432N SN7432N SN7400N SN7400N DM74190N DM74190N SN7490N DM74190N DM86175N
A8A3U14 A8A3U15 A8A3U16 A8A3U17 A8A3VR1	1820-0986 1820-0986 1820-0600 1820-0600 1902-3203	2	INTEGRATED CIRCUIT, DGTL, TTL LP DECADE INTEGRATED CIRCUIT, DGTL, TTL LP DECADE INTEGRATED CIRCUIT, DGTL, TTL DECADE INTEGRATED CIRCUIT, DGTL, TTL DECADE DIDDE; ZENER; 14.7V VZ; .4W MAX PD	27014 27014 27014 27014 27014 04713	DM86L75N DM86L75N DM74L90N DM74L90N Sz 10939-230
A8 A3 X A5 A8 A3 Y1	1251-2035 1813-0006	5 1	CONNECTOR, PC EDGE, 15-CONT, DIP SOLDER Crystal oscillator	71785 28480	252-15-30-300 1813-0006
ABA4	08640-60025	1	COUNTER/DISPLAY ASSY	28480	08640 -6002 5
ABA4DS1 A8A4DS2 Å8A4MP1	2140-0356 2140-0016 03431-01201	1 3	LAMP; INCAND; BULB T1; 5V LAMP, INCAND, BULB T-1, 5V BRACKET:MOUNTING	71744 71744 50443	CM7-7683 683 03431-01201
A8A4MP2 A8A4MP3 A8A4P1A A8A4P1B A8A4P1B A8A401	03431-01201 03431-01201 1260-0363 1260-0364 1854-0071	1 1	BRACKET:MOUNTING BRACKET:MOUNTING CONNECTOR:11 PIN CONNECTOR:25 PIN TRANSISTOR NPN SI PD=300MW FT=200MHZ	50443 50443 28480 28480 28480 28480	03431-01201 03431-01201 1260-0363 1260-0364 1854-0071
A8A4R1 A8A4R2 A8A4R3 A8A4R4 A8A4R5	2100-3299 2100-1738 0698-7277	1 1 1	RESISTOR, VAR, 5K 20% MC SPST SW RESISTOR; VAR; TRMR; 10KDHM 10% C RESISTOR; FXD; 51-1K2% _125W F TUBULAR Not Assigned	28480 19701 24546	2100-3299 ET50W103 C4-1/8-T0-5112-F
A8A4R5 A8A4XD51A,1B	0698-7276 1251-2194	1 2	RESISTOR, FXD, 46.4K2% .125W F TUBULAR CONNECTOR, 1 CONT SKT 0.021"DIA	24546 28480	C4-1/8-TO-4642-F 1251-2194
A8A5	08640-60028	1	RISER ASSY Connector, PC Edge, 15-Cont, dip solder	28480 71785	08640-60028 252-15-30-300
A8A5 XA8 A2 A9	1251-2035 08640-60117	1	PEAK DEVIATION AND RANGE SWITCH ASSY	28480	08640-60117
A9	08640-60082		REBUILT 08640-60117, REQUIRES EXCHANGE	28480	08640-60082
A9C1 A9C2	0140-0191 0140-0191	6	CAPACITOR;FXD; 56PF+-5% 300WVDC Capacitor;FXD; 56PF+-5% 300WVDC	72136 72136	DM15E560J0300WV1CR DM15E560J0300WV1CR
A9C3 A9C4 A9C5	0140-0191 0140-0191 0140-0191		CAPACITOR;FXD; 56PF+-5% 300WVDC Capacitor;FXD; 56PF+-5% 300WVDC Capacitor;FXD; 56PF+-5% 300WVDC	72136 72136 72136	DM15E560J0300WV1CR DM15E560J0300WV1CR DM15E560J0300WV1CR
A9MPI	0510-0052	14	RETAINER, RING	79136	5133-12-S-MD-R 1430-0759
A9MP2 A9MP3 A9MP4 A9MP5 A9MP6	1430-0759 1430-0772 1430-0773 1430-0774 3050-0099	2 1 1 2	GEAR SPUR GEAR:PLANET GEAR:COMBINATION GEAR:COMBINATION WASHER; FLAT .25 ID .5 OD	28480 28480 28480 28480 28480 28480	1430-0772 1430-0773 1430-0774 3050-0099
A9MP7 A9MP8 A9MP9 A9MP10 A9P1	5040-0218 08640-00019 08640-40039 08640-40045 1251-2799	1 1 1 1	COUPLER:SWITCH SHAFT Support:Switch Shaft:Adjustable Shaft:Switch af Band Connector, PC Edge, 15-Cont, Solder Eye	28480 28480 28480 28480 28480 71785	08640-00019 08640-40039 08640-40045 251-15-30-400
A9R1 A9R2 A9R3	2100-3262 0698-4014 0757-0280	1	RESISTOR, VAR, CONT, 2.5K 10% C RESISTOR; FXD; 787 DHM1% .125W F Not Assigned Resistor; FXD; 1k1% .125W F TUBULAR	28480 16299 24546	C4-1/8-T0-787R-F C4-1/8-T0-1001-F
A9R4 A9R5	0757-0278	5	RESISTOR; FXD; 1.78K1% .125W F TUBULAR	24546	
A9R6 A9R7 A9R8 A9R9 A9R10	0757-0274 0757-0416 0698-0082 0757-0280 0698-8211	4	RESISTOR; FXD; 1.21K1% .125W F TUBULAR RESISTOR; FXD; 511 DHM1% .125W F RESISTOR; FXD; 464 OHM1% .125W F RESISTOR; FXD; 414 OHM1% .125W F TUBULAR R:FXD FLM 2K OHM 0.25, 1/4W	24546 24546 16299 24546 30983	C4-1/8-T0-511R-F C4-1/8-T0-4640-F C4-1/8-T0-1001-F MF52C1/4-T9-2001-C
A9R11 A9R12 A9R13 A9R14 A9R15	0757-0280 0698-8212 0698-5669 0698-8213 0698-5669	1 6 4	RESISTOR; FXD; 1K1% .125W F TUBULAR RESISTOR; FXD; 6K.25% .125W F TUBULAR RESISTOR; FXD; 1.5K.25% .125W F TUBULAR RESISTOR; FXD; 3K.25% .125W F TUBULAR RESISTOR; FXD; 1.5K.25% .125W F TUBULAR	24546 30983 19703 30983 19703	MF4C1/4-T9-6001-C MF4C1/8-T9-1501-C MF4C1/4-T9-3001-C

٦

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A9R16 A9R17 A9R18 A9R19 A9R20	0698-8213 0698-5669 0698-8213 0698-5669 0698-8213		RESISTOR; FXD; 3K.25% .125W F TUBULAR RESISTOR; FXD; 1.5K.25% .125W F TUBULAR RESISTOR; FXD; 3K.25% .125W F TUBULAR RESISTOR; FXD; 1.5K.25% .125W F TUBULAR RESISTOR; FXD; 3K.25% .125W F TUBULAR	30983 19701 30983 19701 30983	MF4C1/4-T9-3001-C MF4C1/8-T9-1501-C MF4C1/4-T9-3031-C MF4C1/8-T9-1501-C MF4C1/4-T9-3001-C
A9R21 A9R22 A9R23 A9R24 A9R25	0698-5669 0698-5669 0698-8299 0698-8298 0698-8298	1 1 1	RESISTOR; FXD; 1.5K.25X .125W F TUBULAR RESISTOR; FXD; 1.5K.25X .125W F TUBULAR RESISTOR; FXD; 4.259K.25X .125W F RESISTOR; FXD; 1.071K.25X .125W F RESISTOR; FXD; 1.284K.25X .125W F	19701 19701 30983 30983 30983	MF4C1/8-T9-1501-C MF4C1/8-T9-1501-C MF4C1/8-T9-4259P-C MF4C1/8-T9-1071R-C MF4C1/8-T9-1284R-C
A9R26 A9R27 A9R28 A9R29 A9R30	0757-0398 0698-8296 0757-0399 0698-8295 0757-0400	1	RESISTOR; FXD; 75 DHMIX .125W F TUBULAR RESISTOR; FXD; 1.493K.25% .125W F RESISTOR; FXD; 125W F RESISTOR; FXD; 1.556K.25% .125W F RESISTOR; FXD; 90.9 DHMIX .125W F	24546 30983 24546 30983 24546	C4-1/8-T0-75R0-F MF4C1/8-T9-1493R-C C4-1/8-T0-82R5-F MF4C1/8-T9-1556R-C C4-1/8-T0-90R9-F
A9R31 A9W1 †	0757-0400 08640-60107	1	RESISTOR; FXD; 90.9 OHM1% .125W F CABLE ASSY:PEAK DEVIATION	24546 28480	C4-1/8-T0-90R9-F 08640-60107
A10	08640-60105	1	DIVIDER/FILTER ASSY	28480	08640-60105
A 10MP1 A 10MP2 A 10MP3	0403-0156 0403-0157 0403-0158	2 2 1	GUIDE, PC BOARD, 1 L .25 W LEXAN,YELLOW GUIDE, PC BOARD, 1 L .25 W LEXAN,GREEN GUIDE, PC BOARD, 1 L .25 W LEXAN,BLUE	28480 28480 28480	0403-0156 0403-0157 0403-0158
A10MP4 A10MP5 A10MP6 A10MP7 A10MP8	8160-0226 08640-00047 08640-00048 08640-00049 08640-00050	1 1 1	GASKET MATL,RFI, RND SECT NICKEL ALLOY Shield:Spring #1 Shield:Spring #2 Shield:Spring #3 Shield:Spring #4	28480 28480 28480 28480 28480 28480	8160-0226 08640-00047 08640-00048 08640-00049 08640-00050
A10MP9 A10MP10 A10MP11 A10MP12 A10MP13	08640-20098 08640-20099 2190-0003 2200-0101 2200-0121	1 1 13 4	CAST COVER:TOP D/F CAST:CENTER D/F WASHER: LOCK; HELICAL; 4 .115 ID .253 SCREW;MACHINE; 4-40 UNC-2A .188 IN PAN SCREW;MACHINE; 4-40 UNC-2A 1.125 IN PAN	28480 28480 28480 28480 28480 28480	08640-20098 08640-20099 2190-0003 2200-0101 2200-0121
A10MP14 A10MP15 A10MP16 A10MP17 A10MP18	2200-0147 2200-0127 2190-0124 2950-0078 2200-0129	8 3 5 2	SCREW;MACHINE; 4-40 UNC-2A .5 IN PAN SCREW;MACHINE; 4-40 UNC-2A 1.75 IN PAN MASHER; LUCK; INT; 10 .195 ID .311 DD NUT, HEX 10-32 .067 X .25, BRS, AU PL SCREW;MACHINE; 4-40 UNC-2A 2 IN PAN	28480 28480 24931 24931 28480	2200-0147 2200-0127 LW101-30 HN100-11 2200-0129
A10MP1 9	0361-1071	4	RIVET,BLIND, DOME HD 0.125" DIA	11815	AAP-4-3
A10A1 A10A1	08640-60021 08640-60091	1	RF FILTER ASSY Rebuilt 08640-60021, Requires exchange	28480 28480	08640-60021 08640-60091
A10A1C1 A10A1C2	0160-2055 0160-2055		CAPACITOR,FXD, .01UF+80-20% 100WVDC CAPACITOR,FXD, .01UF+80-20% 100WVDC	28480 28480	0160-2055 0160-2055
A10A1C3 A10A1C4 A10A1C5 A10A1C6 A10A1C6 A10A1C7	0160-2055 0160-2055 0160-2055 0160-2055 0160-2055		CAPACITOR,FXD, .01UF+80-20% 100WVDC CAPACITOR,FXD, .01UF+80-20% 100WVDC CAPACITOR,FXD, .01UF+80-20% 100WVDC CAPACITOR,FXD, .01UF+80-20% 100WVDC CAPACITOR,FXD, .01UF+80-20% 100WVDC	28480 28480 28480 28480 28480 28480	0160-2055 0160-2055 0160-2055 0160-2055 0160-2055
A10A1C8 A10A1C9 A10A1C10 A10A1C11 A10A1C11	0160-2055 0140-0219 0140-0226 0140-0226 0140-0220	2 2 3	CAPACITOR,FXD, .01UF+80-20% 100WVDC CAPACITOR;FXD; 180PF+-2% 300WVDC CAPACITOR;FXD; 320PF+-1% 300WVDC CAPACITOR;FXD; 320PF+-1% 300WVDC CAPACITOR;FXD; 200PF+-1% 300WVDC	28480 72136 72136 72136 72136 72136	DM15F321F0300WV1C
A10A1C13 A10A1C14 A10A1C15 A10A1C15 A10A1C16 A10A1C17	0140-0195 0140-0220 0140-0220 0140-0195 0140-0150	2 1	CAPACITOR;FXD; 130PF+-5% 300WVDC CAPACITOR;FXD; 200PF+-1% 300WVDC CAPACITOR;FXD; 200PF+-1% 300WVDC CAPACITOR;FXD; 130PF+5% 300WVDC CAPACITOR;FXD; 731.5PF+-1% 300WVDC	72136 72136 72136 72136 72136 72136	DM15F201F0300WV1CR DM15F201F0300WV1CP DM15F131J0300WV1CR
A10A1C18 A10A1C19 A10A1C20 A10A1C21 A10A1C21 A10A1C22	0160-3940 0160-2587 0160-2675 0160-2276 0140-0172	1 1 1 1	CAPACITOR;FXD; .0032UF+-1% 100WVDC CAPACITOR;FXD; .004UF+-1% 100WVDC CAPACITOR;FXD; .0039UF+-1% 300WVDC CAPACITOR;FXD; .00278UF+-2% 300WVDC CAPACITOR;FXD; .003UF+-1% 100WVDC	28480 28480 28480 28480 28480 72136	0160-2587 0160-2675 0160-2276
A10A1C23 A10A1C24 A10A1C25 A10A1C25 A10A1C26 A10A1C27	0160-2585 0160-2537 0160-0341 0160-0341 0160-0341 0140-0200	2 1 2 1	CAPACITOR;FXD; .002UF+-1% 100WVDC CAPACITOR;FXD; 360PF+-1% 300WVDC CAPACITOR;FXD; 640PF+-1% 300WVDC CAPACITOR;FXD; 640PF+-1% 300WVDC CAPACITOR;FXD; 390PF+-5% 300WVDC	28480 28480 28480 28480 28480 72136	0160-2537 0160-0341 0160-0341

Í

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Oty	Description	Mfr Code	Mfr Part Number
Designation					
A10A1C28 A10A1C29 A10A1C30 A10A1C31 A10A1C32	0140-0199 0160-0939 0160-0939 0140-0199 0160-2537	2	CAPACITOR;FXD; 240PF+-5% 300WVDC CAPACITOR;FXD; 430PF+-5% 300WVDC CAPACITOR;FXD; 430PF+-5% 300WVDC CAPACITOR;FXD; 240PF+-5% 300WVDC CAPACITOR;FXD; 360PF+-1% 300WVDC	72136 28480 28480 72136 72136	DM15F241J0300WV1CR 0160-0939 0160-0939 DM15F241J0300WV1CR DM15F361F0300WV1C
A10A1C33 A10A1C34 A10A1C35 A10A1C36 A10A1C36 A10A1C37	0160-3092 0160-2585 0160-3937 0160-3939 0160-3938	1 1 1 1	CAPACITOR;FXD; .0016UF+-1% 100WVDC CAPACITOR;FXD; .002UF+-1% 100WVDC CAPACITOR;FXD; .001916UF+-1% 100WVDC CAPACITOR;FXD; .0014UF+-1% 100WVDC CAPACITOR;FXD; .00147UF+-1% 100WVDC	28480 28480 28480 28480 28480 28480	0160-3092 0160-2585 0160-3937 0160-3939 0160-3938
A10A1C38 A10A1C39 A10A1C40 A10A1C41 A10A1C42	0160-2387 0160-0335 0160-2206 0160-2206 0160-2204	2 2 2	CAPACITOR;FXD; .001UF+-1% 500WVDC CAPACITOR;FXD; 91PF+-1% 300WVDC CAPACITOR;FXD; 160PF+-5% 300WVDC CAPACITOR;FXD; 160PF+-5% 300WVDC CAPACITOR;FXD; 100PF+-5% 300WVDC	28480 28480 28480 28480 28480 28480	0160-2387 0160-0335 0160-2206 0160-2206 0160-2204
A10A1C43 A10A1C44 A10A1C45 A10A1C45	0140-0205 0160-0839 0160-0839 0140-0205 0140-0219	2 2	CAPACITOR;FXD; 62PF+-5X 300WVDC CAPACITOR;FXD; 110PF+-1X 300WVDC CAPACITOR;FXD; 110PF+-1X 300WVDC CAPACITOR;FXD; 62PF+-5X 300WVDC CAPACITOR;FXD; 180PF+-2X 300WVDC	72136 28480 28480 72136 72136	DM15E620J0300HV1CR 0160-0839 0160-0839 DM15E620J0300HV1CR DM15F18160300HV1CR
A10A1C47 A10A1C48 A10A1C49 A10A1C50 A10A1C51 A10A1C52	0140-0217 0160-0342 0160-2387 0160-3935 0160-3936 0140-0150	1 1 1	CAPACITOR;FXD; 800PF+-1% 300WVDC CAPACITOR;FXD; •001UF+-1% 500WVDC CAPACITOR;FXD; 958PF+-1% 100WVDC CAPACITOR;FXD; 700PF+-1% 100WVDC CAPACITOR;FXD; 731•5PF+-1% 300WVDC	28480 28480 28480 28480 28480 28480	0160-0342 0160-2387 0160-3935 0160-3936 0160-3936
A10A1C53 A10A1C53 A10A1C55 A10A1C56 A10A1C56 A10A1C57	0140-0234 0160-2307 0160-0974 0160-0974 0160-2201	2 3 2	CAPACITOR,FXD, 500PF+-1% 300WVDC CAPACITOR;FXD; 47PF+-5% 300WVDC CAPACITOR;FXD; 80PF+-2% 300WVDC CAPACITOR;FXD; 80PF+-2% 300WVDC CAPACITOR;FXD; 51PF+-5% 300WVDC	72136 28489 72136 72136 28480	DM15F501F0300WV1C 0160-2307 DM15E80060300WV1CR DM15E80060300WV1CR 0160-2201
A10A1C58 A10A1C59 A10A1C60 A10A1C61 A10A1C62	0160-2306 0160-2201 0160-2201 0160-2199 0160-0335	1	CAPACITOR;FXD; 27PF+-5% 300HVDC CAPACITOR;FXD; 51PF+-5% 300HVDC CAPACITOR;FXD; 51PF+-5% 300HVDC CAPACITOR;FXD; 30PF+-5% 300HVDC CAPACITOR;FXD; 91PF+-1% 300HVDC	28480 28480 28480 28480 28480 28480	0160-2306 0160-2201 0160-2201 0160-2199 0160-0335
A10A1C63 A10A1C64 A10A1C65 A10A1C66 A10A1C66	0140-0177 0140-0234 0140-0233 0160-3934 0160-2537	1 1 1	CAPACITOR; FXD; 400PF+-1% 300WVDC CAPACITOR; FXD; 500PF+-1% 300WVDC CAPACITOR; FXD; 480PF+-1% 300WVDC CAPACITOR; FXD; 340PF+-1% 300WVDC CAPACITOR; FXD; 360PF+-1% 300WVDC	72136 72136 72136 28480 72136	DM15F401F0309WV1CR DM15F501F0300WV1C DM15F481F0300WV1C 0160-3934 DM15F361F0399WV1C
A10A1C68 A10A1C69 A10A1C70 A10A1C71	0160-2357 0160-3046 0160-2265 0140-0190 0140-0190 0160-2266	1 1 2 4	CAPACITOR;FXD; 250PF+-1% 100WVDC CAPACITOR;FXD; 22PF+-5% 500WVDC CAPACITOR;FXD; 39PF+-5% 300WVDC CAPACITOR;FXD; 39FF+-5% 300WVDC CAPACITOR;FXD; 24PF+-5% 500WVDC	28480 28480 72136 72136 28480	
A 10A1C 72 A 10A1C 73 A 10A1C 74 A 10A1C 75 A 10A1C 75 A 10A1C 77	0160-2260 0160-2266 0160-2266 0160-2262 0160-2257	1	CAPACITOR;FXD; 13PF+-5% 500WVDC CAPACITOR;FXO; 24PF+-5% 500WVDC CAPACITOR;FXO; 24PF+-5% 500WVDC CAPACITOR;FXD; 16PF+-5% 500WVDC CAPACITOR;FXD; 10PF+-5% 500WVDC	28480 28480 28489 28480 28480 28489	0160-2266 0160-2266 0160-2262
A10A1C77 A10A1C78 A10A1C79 A10A1C80 A10A1C81 A10A1C82	0160-2263 0160-2263 0160-2257 0121-0060 0121-0061	2 2 2	CAPACITOR;FXD; 18PF+-5% 500WVDC CAPACITOR;FXD; 18PF+-5% 500WVDC CAPACITOR;FXD; 10PF+-5% 500WVDC CAPACITOR, VAR, TRMR, CER, 2/8PF CAPACITOR, VAR, TRMR, CER, 5.5/18PF	28480 28480 28480 73895 73895	0160-2263 0160-2257 DV11PS8A
A10A1C82 A10A1C83 A10A1C84 A10A1C85 A10A1C86 A10A1C87	0121-0061 0121-0060 0160-0174 0160-0197 0160-0174		CAPACITOR, VAR, TRMR, CER, 5.5/18PF CAPACITOR, VAR, TRMR, CER, 2/8PF CAPACITOR;FXD; .47UF+80-20% 25WVDC CAPACITOR;FXD; .42UF+10% 20VDC TA CAPACITOR;FXD; .47UF+80-20% 25WVDC	73899 73899 28480 56289 28480	DV11PS8A 0160-0174 150D225X9020A2
A10A1C88 A10A1C89 A10A1C90 A10A1C91 A10A1C91	0180-0197 0160-0174 0180-0197 0160-2055 0160-2055		CAPACITOR-FXD, 2.2UF+-10% 20VDC TA CAPACITOR;FXD; .47UF+80-20% 25WVDC CAPACITOR-FXD, 2.2UF+-10% 20VDC TA CAPACITOR;FXD, .01UF+80-20% 100WVDC CAPACITOR;FXD; .0055UF+-0% 200WVDC	56289 28480 56289 28480 0112	0 0160-0174 9 150D225X9020A2 0 0160-2055
AIDAIFLI AIDAIFLI AIDAIFLI AIDAIFLI AIDAIJI AIDAIJI AIDAIJI	0160-0204 0160-0204 1250-1220 1250-1220 1250-1220		CAPACITOR;FXD; .0055UF+-0% 200WVDC CAPACITOR;FXD; .0055UF+-0% 200WVDC CONNECTOR-COAX, SMC, 50 OHM MALE CONNECTOR-COAX, SMC, 50 OHM MALE CONNECTOR-COAX, SMC, 50 OHM MALE	0112 0112 9829 9829 9829 9829	1 SMFB-A2 1 50-751-0109 1 50-051-0109
A10A1J4 A10A1K1 A10A1K2 A10A1K3 A10A1K3	1250-1220 0490-1073 0490-1073 0490-1073 0490-1073		CONNECTOR-COAX, SMC, 50 OHM MALE RELAY; REED; 1A .25A 120V CONT; 4.5V RELAY; REED; 1A .25A 120V CONT; 4.5V RELAY; REED; 1A .25A 120V CONT; 4.5V RELAY; REED; 1A .25A 120V CONT; 4.5V	9829 2848 2848 2848 2848 2848	0 0490-1073 0 0490-1073 0 0490-1073

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A10A1L1 A10A1L2 A10A1L3 A10A1L4 A10A1L4 A10A1L5 A10A1L6 A10A1L7	9100-3375 9100-3365 9100-3375 9100-3361 9100-3361 9100-3361 9100-3364	2 2 1 1 1	COIL::FXD; MOLDED RF CHOKE; .462UH 5% COIL:FXD MOLDED 0.500UH 5% COIL; FXD; MOLDED RF CHOKE; .462UH 53 COIL; FXD; MOLDED RF CHOKE; .40H 53 COIL; FXD; MOLDED RF CHOKE; .3UH 53 COIL; FXD; MOLDED RF CHOKE; .3UH 53 COIL; FXD; MOLDED RF CHOKE; 8UH 53	28480 24226 28480 0004A 0004A 0004A 0004A	9100-3375 9303 9100-3375 AE-,300 ^{J-P} AD-,323J-P AD-,300J-P AH-8,00J-I
A10A1L8 A10A1L9 A10A1L10 A10A1L11 A10A1L12	9100-3374 9100-3363 9100-3369 9100-3370 9100-3369	2 1 2 3	COIL; FXD; MOLDED RF CHOKE; 4.00UH 5% COIL; FXD; MOLDED RF CHOKE; 4.74UH 5% COIL; FXD; MOLDED RF CHOKE; •924UH 5% COIL; FXD; MOLDED RF CHOKE; •924UH 5% COIL; FXD; MOLDED RF CHOKE; •924UH 5%	28480 0004A 28480 28480 28480 28480	9100-3374 AK-4.74J-P 9100-3369 9100-3370 9100-3369
A10A1L13 A10A1L14 A10A1L15 A10A1L16 A10A1L17	9100-3368 9100-3367 9100-3368 9100-3374 9100-3372	2 1 2	COIL; FXD; MOLDED RF CHOKE: .60H 53 COIL; FXD; MOLDED RF CHOKE; .646UH 53 COIL; FXD; MOLDED RF CHOKE; .60H 53 COIL; FXD; MOLDED RF CHOKE; 4.00UH 55 COIL; FXD; MOLDED RF CHOKE; 2.00UH 55	28480 0004A 28480 28480 28480 28480	9100-3368 AE646J-P 9100-3368 9100-3374 9100-3372
A10A1L18 A10A1L19 A10A1L20 A10A1L21 A10A1L21	9100-3373 9100-3359 9100-3360 9100-3359 9100-3357	1 2 1 2	COIL; FXD; MOLDED RF CHOKE; 2.37UH 5% COIL; FXD; MOLDED RF CHOKE; .231UH 5% COIL; FXD; MOLDED RF CHOKE; .250H 5% COIL; FXD; MOLDED RF CHOKE; .231UH 5% COIL; FXD; MOLDED RF CHOKE; .15UH 5%	28480 0004A 0004A 0004A 0004A	9100-3373 AC231J-P AC250J-P AC231J-P AC150J-P
A10A1L23 A10A1L24 A10A1L25 A10A1L26 A10A1L27	9100-3358 9100-3357 9100-3372 9100-3370 9100-3371	1	COIL; FXD; MOLDED RF CHOKE; .162UH 5% COIL; FXD; MOLDED RF CHOKE; .15UH 5% COIL; FXD; MOLDED RF CHOKE; 2.00UH 5% COIL; FXD; MOLDED RF CHOKE; 1.00UH 5% COIL; FXD; MOLDED RF CHOKE; 1.18UH 5%	0004A 0004A 28480 28480 28480 28480	AC162J-P AC150J-P 9100-3372 9100-3370 9100-3371
A10A1L28 A10A1L29 A10A1L30 A10A1L31 A10A1L31 A10A1L32	9100-3355 9100-3356 9100-3355 9100-3377 9100-3377 9100-3377 9150-0037	2 1 3	COIL; FXD; MOLDED RF CHOKE; .12UH 5% COIL; FXD; MOLDED RF CHOKE; .125UH 5% COIL; FXD; MOLDED RF CHOKE; .12UH 5% COIL:3-1/2 TURN COIL:3-1/2 TURN COIL FORM; PC TYPE, FIBERGLASS	0004A 0004A 28480 28480 28480 24226	AC115J-P AC125J-P AC115J-P 9100-3377 9100-3377 DEL 7-434
A10A1L33 A10A1L34 A10A1L35	9100-3377 9150-0037 9100-3370 9100-3365		COIL:3-1/2 TURN COIL FORM:PC TYPE, FIBERGLASS COIL; FXD; MOLDED RF CHOKE; 1.00UH 5% COIL; FXD; MOLDED RF CHOKE; .5UH 5%	28480 24226 28480 0004A	9100-3377 DEL 7-434 9100-3370 AE500J-P
A10A1L36 A10A1L37 A10A1L38	9100-3366 9100-3376 9150-0037 9100-3376 9150-0037	1 3	COIL, FXD, MOLDED RF CHOKE, .592UH 5% COIL:2-1/2 TURN COIL FORM:PC TYPE, FIBERGLASS COIL:2-1/2 TURN COIL FORM:PC TYPE, FIBERGLASS	24226 28480 24226 28480 24226	9304 9100-3376 DEL 7-434 9100-3376 DEL 7-434
A10A1L39 A10A1L40 A10A1L41	9100-3376 9150-0037 9100-3378 9150-0037 9100-3378 9150-0037	6	COIL:2-1/2 TURN COIL FORM:PC TYPE, FIBERGLASS COIL:1-1/2 TURN COIL FORM:PC TYPE, FIBERGLASS COIL:1-1/2 TURN COIL FORM;PC TYPE, FIBERGLASS	28480 24226 28480 24226 28480 24226 24226	9100-3376 DEL 7-434 9100-3378 DEL 7-434 9100-3378 DEL 7-434
A10A1L42 A10A1L43	9100-3378 9150-0037 9100-3378 9150-0037		COIL:1-1/2 TURN COIL FORM:PC TYPE, FIBERGLASS COIL:1-1/2 TURN COIL FORM:PC TYPE, FIBERGLASS	28480 24226 28480 24226	9100-3378 DEL 7-434 9100-3378 DEL 7-434
A10A1L44 A10A1L45 A10A1L46	9100-3378 9150-0037 9100-3378 9150-0037		COIL:1-1/2 TURN COIL FORM:PC TYPE, FIBERGLASS COIL:1-1/2 TURN COIL FORM:PC TYPE, FIBERGLASS PART OF ETCHED CIRCUIT BOARD	28480 24226 28480 24226	9100-3378 DEL 7-434 9100-3378 DEL 7-434
A10A1L47 A10A1L48		3	PART OF ETCHED CIRCUIT BOARD		
A10A1L49 A10A1L50 A10A1L51 A10A1L52 A10A1L52	9140-0144 9140-0144 08640-80001 08640-80001 08640-80001	2	COIL, FXD, MOLDED RF CHOKE, 4.7UH 10% COIL, FXD, MOLDED RF CHOKE, 4.7UH 10% TORRID FILTER TORRID FILTER TORRID FILTER TORRID FILTER	24226 24226 28480 28480 28480 28480	10/471 10/471 08640-80001 08640-80001 08640-80001
A10A1L54 A10A1MP1 A10A1MP2 A10A1MP3 A10A1MP3	08640-80001 1480-0352 08443-20093 08640-00029 08640-20082	1 1 1 1 1	TORRID FILTER PIN:DETENT 0.055 X 0.750" DIA Roller:Detent Spring:Detent Shaft:CAM	28480 00000 28480 28480 28480 28480	08640-80001 1480-0352 08443-20003 08640-00029 08640-20082
A10A1MP5 A10A1MP6 A10A1MP7 A10A1MP8 A10A1MP9	08640-20083 08640-20200 08640-20214 08640-20219 08640-40004	1 1 2 1 6	SHAFT:CAM FOLL CAST COVER:BOITOM D/F BUSHING:CAM HOUSING Cover:CAM Follower:CAM	28480 28480 28480 28480 28480 28480	08640-20083 08640-20200 08640-20214 08640-20219 08640-40004

ł

.

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
Designation					
AlDAIMPIO AlDAIMPII AlDAIMPII AlDAIMPIZ AlDAIMPI3 AlDAIMPI5 AlDAIMPI5 AlDAIR1 AlDAIR2 AlDAIR3 AlDAIR3	08640-20064 2200-0105 08640-20133 3030-0007 2200-0145 08640-20206 0510-0015 0757-0346 0757-0346 0757-0346 0757-0346	1 2 12	CAM:SLIDER SCREW;MACHINE; 4-40 UNC-2A .312 IN PAN SUPPORT:CLAMP SCREW;SET; 4-40 UNC-3A .125 IN SCREW;MACHINE; 4-40 UNC-2A .438 IN PAN RETAINER:SLIDER RETAINER, RING, .125 DIA, CAD PLT STL RESISTOR; FXD; 10 OHMIX .125W F TUBULAR RESISTOR; FXD; 10 OHMIX .125W F TUBULAR RESISTOR; FXD; 10 OHMIX .125W F TUBULAR RESISTOR; FXD; 10 OHMIX .125W F TUBULAR	28480 28480 28480 28480 28480 79136 24546 24546 24546 24546 24546	08640-20064 2200-0105 08640-20133 3030-0007 2200-0145 08640-20206 5133-12-5-MD-R C4-1/8-T0-10R0-F C4-1/8-T0-10R0-F C4-1/8-T0-10R0-F C4-1/8-T0-10R0-F
AlDAIR5 AlDAIR6 AlDAIR7 AlDAIR8 AlDAIR9	0757-0346 0757-0346 0757-0346 0757-0346 0757-0346 0757-0346		RESISTOR; FXD; 10 DHM13 .125W F TUBULAR RESISTOR; FXD; 10 DHM13 .125W F TUBULAR RESISTOR; FXD; 10 OHM13 .125W F TUBULAR RESISTOR; FXD; 10 OHM13 .125W F TUBULAR RESISTOR; FXD; 10 OHM13 .125W F TUBULAR	24546 24546 24546 24546 24546 24546	C4-1/8-T0-10R0-F C4-1/8-T0-10R0-F C4-1/8-T0-10R0-F C4-1/8-T0-10R0-F C4-1/8-T0-10R0-F
A10A1S1 A10A1S2 A10A1S3	08640-60106 3130-0480 08640-60106 3130-0480 08640-60106 3130-0480	6 6	SWITCH:SLIDE D/F CONTACT:SWITCH SWITCH:SLIDE D/F CONTACT:SWITCH SWITCH:SLIDE D/F CONTACT:SWITCH	28480 28480 28480 28480 28480 28480 28480	08640-60106 3130-0480 08640-60106 3130-0480 08640-60106 3130-0480
A10A154 A10A155	08640-60106 3130-0480 08640-60106 3130-0480		SWITCH:SLIDE D/F Contact:Switch Switch:Slide D/F Contact:Switch	28480 28480 28480 28480 28480	08640-60106 3130-0480 08640-60106 3130-0480
A10A1S6 A10A1W1 A10A1W2 A10A1W3 A10A1XA10A3A A10A1XA10A3B	08640-60106 3130-0480 8120-1830 8120-1832 8120-1831 1251-2035 1251-2026	1 1 1 2	SWITCH:SLIDE D/F CONTACT:SWITCH CABLE ASSY:2.557 CABLE ASSY:0.950 CABLE ASSY:1.290 CONNECTOR, PC EDGE, 15-CONT, DIP SOLDER CONNECTOR, PC EDGE, 18-CONT, DIP SOLDER	28480 28480 28480 28480 28480 71785 71785	08640-60106 3130-0480 8120-1830 8120-1832 8120-1831 252-15-30-300 252-18-30-300
A10A2 A10A2	08640-60023 08640-60092	1	RF DIVIDER ASSY Rebuilt 08640-60023, Requires Exchange	28480 28489	08640-60023 08640-60092 -/
A10A2C1 A10A2C2 A10A2C3 A10A2C3	0160-3456 0160-3456 0160-3456 0160-3456 0160-3456		CAPACITOR;FXD; .001UF+-103 1000WVDC CAPACITOR;FXD; .001UF+-103 1000WVDC CAPACITOR;FXD; .001UF+-103 1000WVDC CAPACITOR;FXD; .001UF+-103 1000WVDC	28480 28480 28480 28480 28480	0160-3456 0160-3456 0160-3456 0160-3456
A10A2C5 A10A2C6 A10A2C7 A10A2C7 A10A2C8 A10A2C9	0160-3456 0160-3456 0160-3456 0160-2055		NOT ASSIGNED CAPACITOR;FXD; .001UF+-10% 1000WVDC CAPACITOR;FXD; .001UF+-10% 1000WVDC CAPACITOR;FXD; .001UF+-10% 1000WVDC CAPACITOR;FXD; .01UF+80-20% 100WVDC	28480 28480 28480 28480 28480	0160-3456 0160-3456 0160-3456 0160-2055
A10A2C10 A10A2C11 A10A2C12 A10A2C13 A10A2C13	0160-2055 0160-3456 0160-2055 0160-3456 0160-3456		CAPACITOR,FXD, .01UF+80-20% 100WVDC CAPACITOR;FXD; .001UF+-10% 1000WVDC CAPACITOR;FXD; .01UF+80-20% 100WVDC CAPACITOR;FXD; .001UF+-10% 1000WVDC CAPACITOR;FXD; .001UF+-10% 1000WVDC	28480 28480 28480 28480 28480 28480	0160-2055 0160-3456 0160-2055 0160-3456 0160-3456
A10A2C15 A10A2C16 A10A2C17 A10A2C18 A10A2C18 A10A2C19	0160-3456 0180-0100 0160-3456 0180-0100 0180-0197	3	CAPACITOR;FXD; .001UF+-10% 1000WVDC CAPACITOR-FXD; 4.7UF+-10% 35VDC TA CAPACITOR;FXD; .001UF+-10% 1000WVDC CAPACITOR;FXD; 4.7UF+-10% 35VDC TA CAPACITOR-FXD; 2.2UF+-10% 20VDC TA	28480 56289 28480 56289 56289	0160-3456 150D475X9035B2 0160-3456 150D475X9035B2 150D225X9020A2
A10A2C20 A10A2C21 A10A2C22 A10A2C23 A10A2C23 A10A2C24	0180-0374 0180-1743 0180-0374 0160-3456	3	CAPACITOR-FXD, 10UF+-103 20VDC TA-SOLID NOT ASSIGNED CAPACITOR-FXD, 1UF+-103 35VDC TA-SOLID CAPACITOR-FXD, 10UF+-103 20VDC TA-SOLID CAPACITOR;FXD; +001UF+-103 1000WVDC	56289 56289 56289 28480	150D106X9020B2
A10A2C25 A10A2C25 A10A2C27 A10A2C28 A10A2C28 A10A2C29	0160~3456 0160-3456 0160-3456 0160-3456 0160-3456		CAPACITOR;FXD; .001UF+-101 1000WVDC CAPACITOR;FXD; .001UF+-101 1000WVDC CAPACITOR;FXD; .001UF+-101 1000WVDC CAPACITOR;FXD; .001UF+-101 1000WVDC CAPACITOR;FXD; .001UF+-101 1000WVDC	28480 28480 28480 28480 28480 28480	0160-3456 0160-3456 0160-3456
A10A2C30 A10A2C31 A10A2C32 A10A2C33 A10A2C33	0160-3456 0160-3456 0160-3456 0160-3456 0160-3456		CAPACITOR;FXD; .001UF+-103 1000WVDC CAPACITOR;FXD; .001UF+-103 1000WVDC CAPACITOR;FXD; .001UF+-103 1000WVDC CAPACITOR;FXD; .001UF+-103 1000WVDC CAPACITOR;FXD; .001UF+-103 1000WVDC	28480 28480 28480 28480 28480 28480	0160-3456 0160-3456 0160-3456
A10A2C35 A10A2C36 A10A2C36 A10A2C37 A10A2C37 A10A2C39	0160-3456 0160-2055 0160-2055 0160-2055 0160-2055		CAPACITOR;FXD; .001UF+-103 1000WVDC CAPACITOR,FXD; .01UF+80-203 100WVDC CAPACITOR;FXD, .01UF+80-203 100WVDC CAPACITOR;FXD, .01UF+80-203 100WVDC CAPACITOR;FXD, .01UF+80-203 100WVDC	28480 28480 28480 28480 28480	0160-2055 0160-2055 0160-2055

1

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A10A2C40 A10A2C41 A10A2C42 A10A2C43 A10A2C44	0160-2055 0160-2055 0180-1743 0180-1743 0180-1743		CAPACITOR,FXD, .01UF+80-20% 100WVDC CAPACITOR,FXD, .01UF+80-20% 100WVDC CAPACITOR-FXD, .1UF+-10% 35VDC TA-SOLID CAPACITOR-FXD, .1UF+-10% 35VDC TA-SOLID CAPACITOR-FXD, .1UF+-10% 35VDC TA-SOLID	28480 28480 56289 56289 56289	0160-2055 0160-2055 1500104X9035A2 1500104X9035A2 1500104X9035A2
A10A2C45 A10A2C46 A10A2C47 A10A2C47 A10A2C48 A10A2C49	0180-1743 0180-1743 0180-1743 0180-1743 0180-1743 0180-1743		CAPACITOR-FXD, .1UF+-10% 35VDC TA-SOLID CAPACITOR-FXD, .1UF+-10% 35VDC TA-SOLID CAPACITOR-FXD, .1UF+-10% 35VDC TA-SOLID CAPACITOR-FXD, .1UF+-10% 35VDC TA-SOLID CAPACITOR-FXD, .1UF+-10% 35VDC TA-SOLID	56289 56289 56289 56289 56289 56289	150D104X9035A2 150D104X9035A2 150D104X9035A2 150D104X9035A2 150D104X9035A2 150D104X9035A2
A10A2C50 A10A2C51 A10A2C52 A10A2CR1 A10A2CR1 A10A2CR2	0180-1743 0160-3456 0180-0197 1901-0025 1901-0025		CAPACITOR-FXD, .1UF+-10% 35VDC TA-SOLID CAPACITOR;FXD; .001UF+-10% 1000NVDC CAPACITOR-FXD, 2.2UF+-10% 20VDC TA DIODE; GEN PRP;SI; 100V MAX VRM 200MA DIODE; GEN PRP;SI; 100V MAX VRM 200MA	56289 28480 56289 28480 28480	150D104X9035A2 0160-3456 150D225X9020A2 1901-0025 1901-0025
A10A2CR3 A10A2CR4 A10A2CR5 A10A2CR6 A10A2CR7	1901-0025 1901-0025 1901-0025 1901-0025 1901-0025 1901-0025		DIODE; GEN PRP;SI; 100V MAX VRM 200MA DIODE; GEN PRP;SI; 100V MAX VRM 200MA	28480 28480 28480 28480 28480 28480	1901-0025 1901-0025 1901-0025 1901-0025 1901-0025
A10A2CR8 A10A2CR9 A10A2L1 A10A2L2 A10A2L2	1901-0025 1901-0025		DIODE; GEN PRP; SI; 100V MAX VRM 200MA DIODE; GEN PRP; SI; 100V MAX VRM 200MA PART OF ETCHED CIRCUIT BOARD NOT ASSIGNED	28480 28480	1901-0025 1901-0025
A10A2L3 A10A2L4 A10A2L5 A10A2L6 A10A2L7 A10A2L8	9100-1620 9140-0096 9100-1612 9140-0094 9100-1615 9140-0098	1 1 1 1	COIL, FXD, MOLDED RF CHOKE, 15UH 103 COIL, FXD, MOLDED RF CHOKE, 1UH 103 COIL, FXD, MOLDED RF CHOKE, .33UH 203 COIL, FXD, MOLDED RF CHOKE, .68UH 103 COIL, FXD, MOLDED RF CHOKE, 1.2UH 103 COIL, FXD, MOLDED RF CHOKE, 2.2UH 103	24226 24226 24226 24226 24226 24226 24226	15/152 15/101 15/330 15/680 15/121 15/221
A10A2L9 A10A2L10 A10A2L11 A10A2L11 A10A2L12 A10A2L13	9100-1618 9140-0114 9100-1620 9100-1620 9100-1628	1 1 2	COIL, FXD, MOLDED RF CHOKE, 5.6UH 10% COIL, FXD, MOLDED RF CHOKE, 10UH 10% COIL, FXD, MOLDED RF CHOKE, 15UH 10% COIL, FXD, MOLDED RF CHOKE, 15UH 10% COIL; FXD; MOLDED RF CHOKE; 43UH 5%	24226 24226 24226 24226 24226 24226	15/561 15/102 15/152 15/152 15/432
A 10A 2L14 A 10A 2L15 A 10A 2L16 A 10A 201 A 10A 202	9100-1620 9100-1620 9100-1628 1854-0071 1853-0034	9	COIL, FXD, MOLDED RF CHOKE, 15UH 107 COIL, FXD, MOLDED RF CHOKE, 15UH 107 COIL, FXD, MOLDED RF CHOKE, 15UH 107 COIL; FXD; MOLDED RF CHOKE; 43UH 57 TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR PNP SI PD=360MW FT=400MHZ	24226 24226 24226 28480 28480	15/152 15/152 15/432 1854-0071 1853-0034
A 10A 2Q3 A 10A 2Q4 A 10A 2Q5 A 10A 2R1 A 10A 2R2	1853-0034 1853-0034 1854-0345 0757-0394 0757-0394	1	TRANSISTOR PNP SI PD=360MW FT=400MHZ TRANSISTOR PNP SI PD=360MW FT=400MHZ TRANSISTOR NPN 2N5179 SI PD=200MW RESISTOR; FXD; 51.1 0HM1X .125W F RESISTOR; FXD; 51.1 0HM1X .125W F	28480 28480 04713 24546 24546	1853-0034 1853-0034 2N5179 C4-1/8-T0-51R1-F C4-1/8-T0-51R1-F
A10A2R3 A10A2R4 A10A2R5 A10A2R6 A10A2R7	0757-0394 0757-0984 0757-0438 0698-7194 0698-7223	9 3 6	RESISTOR; FXD; 51.1 OHM1X .125W F RESISTOR; FXD; 10 OHM1X .5W F TUBULAR RESISTOR; FXD; 5.11K1X .125W F TUBULAR RESISTOR; FXD; 17.8 OHM2X .05W F RESISTOR; FXD; 287 OHM2X .05W F TUBULAR	24546 30983 24546 24546 24546	C4-1/8-T0-51R1-F MF7C1/2-T0-10R0-F C4-1/8-T0-5111-F C3-1/8-T0-17R8-G C3-1/8-T0-287R-G
A10A2R8 A10A2R9 A10A2R10 A10A2R11 A10A2R12	0698-7223. 0757-0394 0757-0984 0757-0438 0698-7194		RESISTOR; FXD; 287 DHM2X .05W F TUBULAR RESISTOR; FXD; 51.1 DHM1X .125W F RESISTOR; FXD; 10 DHM1X .5W F TUBULAR RESISTOR; FXD; 5.11K1 .125W F TUBULAR RESISTOR; FXD; 17.8 DHM2X .05W F	24546 24546 30983 24546 24546	C3-1/8-T0-287R-G C4-1/8-T0-51R1-F Mf7C1/2-T0-10R0-F C4-1/8-T0-5111-F C3-1/8-T00-17R8-G
A10 A2R 13 A10 A2R 14 A10 A2R 15 A10 A2R 15 A10 A2R 16 A10 A2R 17	0698-7223 0698-7223 0757-0394 0757-0438 0757-0984		RESISTOR; FXD; 287 OHM23 .05W F TUBULAR RESISTOR; FXD; 287 OHM23 .05W F TUBULAR RESISTOR; FXD; 51.1 OHM11 .125W F RESISTOR; FXD; 5.11K1 .125W F TUBULAR RESISTOR; FXD; 10 OHM13 .5W F TUBULAR	24546 24546 24546 24546 30983	C3-1/8-T0-287R-G C3-1/8-T0-287R-G C4-1/8-T0-51R1-F C4-1/8-T0-5111-F MF7C1/2-T0-10R0-F
A10A2R18 A10A2R19 A10A2R20 A10A2R21 A10A2R21 A10A2R22	0698-7194 0698-7223 0698-7223 0757-0398 0757-0984		RESISTOR; FXD; 17.8 OHM23 .05W F RESISTOR; FXD; 287 OHM23 .05W F TUBULAR RESISTOR; FXD; 287 OHM23 .05W F TUBULAR RESISTOR; FXD; 75 OHM13 .125W F TUBULAR RESISTOR; FXD; 10 OHM13 .5W F TUBULAR	24546 24546 24546 24546 30983	C3-1/8-T00-17R8-G C3-1/8-T0-287R-G C3-1/8-T0-287R-G C4-1/8-T0-75R0-F MF7C1/2-T0-10R0-F
A10 A2R23 A10 A2R24 A10 A2R25 A10 A2R25 A10 A2R26 A10 A2R27	0757~0438 0698-7224 0698-7219 0698-7190 0698-7227	2 2 4	RESISTOR; FXD; 5.11K13 .125W F TUBULAR RESISTOR; FXD; 316 OHM23 .05W F TUBULAR RESISTOR; FXD; 196 OHM23 .05W F TUBULAR RESISTOR; FXD; 12.1 OHM23 .05W F RESISTOR; FXD; 422 OHM23 .05W F TUBULAR	24546 24546 24546 24546 24546 24546	C4-1/8-T0-5111-F C3-1/8-T0-316R-G C3-1/8-T0-196R-G C3-1/8-T00-12R1-6 C3-1/8-T0-422R-G
A10A2R28 A10A2R29 A10A2R30 A10A2R31 A10A2R31 A10A2R32	0698-7227 0698-3437 0757-0399 0757-0984 0757-0438		RESISTOR; FXD; 422 OHM2% .05W F TUBULAR RESISTOR; FXD; 133 OHM1% .125W F RESISTOR; FXD; 82.5 OHM1% .125W F RESISTOR; FXD; 10 OHM1% .5W F TUBULAR RESISTOR; FXD; 5.11K1% .125W F TUBULAR	24546 16299 24546 30983 24546	C3-1/8-T0-422R-G C4-1/8-T0-133R-F C4-1/8-T0-82R5-F MF7C1/2-T0-10R9-F C4-1/8-T0-5111-F

¢

Í

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
Designation					
A10A2R33 A10A2R34 A10A2R35 A10A2R35 A10A2R36 A10A2R37	0698-7224 0698-7219 0698-7190 0698-7227 0698-7227		RESISTOR; FXD; 316 DHM2% .05W F TUBULAR RESISTOR; FXD; 196 DHM2% .05W F TUBULAR RESISTOR; FXD; 12.1 DHM2% .05W F RESISTOR; FXD; 422 DHM2% .05W F TUBULAR RESISTOR; FXD; 422 OHM2% .05W F TUBULAR	24546 24546 24546 24546 24546 24546	C3-1/8-T0-316R-G C3-1/8-T0-196R-G C3-1/8-T00-12R1-G C3-1/8-T0-422R-G C3-1/8-T0-422R-G C4-1/8-T0-82R5-F
A10A2R38 A10A2R39 A10A2R40 A10A2R41 A10A2R41	0757-0399 0698-3437 0757-0984 0757-0438 0757-0438		RESISTOR; FXD; 82.5 OHM1% .125W F RESISTOR; FXD; 133 OHM1% .125W F RESISTOR; FXD; 10 OHM1% .5W F TUBULAR RESISTOR; FXD; 5.11K1% .125W F TUBULAR RESISTOR; FXD; 10 OHM1% .5W F TUBULAR	16299 30983 24546 30983	C4-1/8-T0-133R-F MFTC1/2-T0-10R0-F C4-1/8-T0-5111-F MFTC1/2-T0-10R0-F C4-1/8-T0-5111-F
A10 A2R43 A10 A2R44 A10 A2R45 A10 A2R45 A10 A2R46	0757-0438 0757-0984 0698-7253 0698-7253 0698-3440		RESISTOR; FXD; 5.11K1% .125W F TUBULAR RESISTOR; FXD; 10 DHM1% .5W F TUBULAR RESISTOR; FXD; 5.11K2% .05W F TUBULAR RESISTOR; FXD; 5.11K2% .05W F TUBULAR RESISTOR; FXD; 196 DHM1% .125W F	24546 30983 24546 24546 16299	MF7C1/2-T0-10R0-F C3-1/8-T0-5111-G C3-1/8-T0-5111-G C4-1/8-T0-196R-F
A10A2R47 A10A2R48 A10A2R49 A10A2R50 A10A2R51	0698-3444 0757-0379 0698-3447 0698-3447	1 8	RESISTOR; FXD; 316 OHM1% .125W F RESISTOR; FXD; 12.1 OHM1% .125W F RESISTOR; FXD; 422 OHM1% .125W F RESISTOR; FXD; 422 OHM1% .125W F RESISTOR; FXD; 10K1% .125W F TUBULAR	16299 30983 16299 16299 24546	C4-1/8-T0-316R-F MF4C1/8-T0-12R1-F C4-1/8-T0-422R-F C4-1/8-T0-422R-F C4-1/8-T0-4022R-F
A10 A2R 52 A10 A2R 53 A10 A2R 54 A10 A2R 55 A10 A2R 55 A10 A2R 56	0757-0442 0757-0984 0757-0442 0698-3151 0757-0461 0757-1094	2	RESISTOR; FXD; 10 DHM1% .5W F TUBULAR RESISTOR; FXD; 10K1% .125W F TUBULAR RESISTOR; FXD; 2.87K1% .125W F TUBULAR RESISTOR; FXD; 6.8.1K1% .125W F TUBULAR RESISTOR; FXD; 1.47K1% .125W F TUBULAR	30983 24546 16299 24546 24546	MF7C1/2-T0-10R0-F C4-1/8-T0-1002-F C4-1/8-T0-2871-F C4-1/8-T0-6812-F C4-1/8-T0-1471-F
A10 A2R 57 A10 A2R 58 A10 A2R 59 A10 A2R 59 A10 A2R 60 A10 A2R 61	0757-0458 0757-0442 0757-0280 0757-0280		RESISTOR; FXD; 51.1K1% .125W F TUBULAR RESISTOR; FXD; 10K1% .125W F TUBULAR RESISTOR; FXD; 1K1% .125W F TUBULAR RESISTOR; FXD; 1K1% .125W F TUBULAR RESISTOR; FXD; 511 OHM1% .125W F	24546 24546 24546 24546 24546 24546	C4-1/8-T0-1001-F C4-1/8-T0-1001-F
A10A2R62 A10A2T1 A10A2T2 A10A2T3 A10A2T3 A10A2T4	0757-0416 08553-6012 08553-6012 08553-6012 08553-6012	5		28480 28480 28480 28480 28480 28480	08553-6012 08553-6012 08553-6012
A10A2T5 A10A2T6 A10A2TP1 A10A2TP2 A10A2TP3	08553-6012 08640-80002 0360-1514 0360-1514 0360-1514	1		28480 28480 28480 28480 28480 28480	0360-1514 0360-1514 0360-1514
A10A2TP4 A10A2U1 A10A2U2 A10A2U3 A10A2U3	0360-1514 1826-0013 1820-0102 1820-0102 1820-0102		IC;LIN;OPERATIONAL AMPLIFIER INTEGRATED CIRCUIT, DGTL, ECL J-K FLIP INTEGRATED CIRCUIT, DGTL, ECL J-K FLIP INTEGRATED CIRCUIT, DGTL, ECL J-K FLIP INTEGRATED CIRCUIT, DGTL, ECL J-K FLIP	2848 0471 0471 0471 0471 0471	3 MC1013P 3 MC1013P 3 MC1013P
A10A2U5 A10A2U6 A10A2U7 A10A2U8 A10A2U8 A10A2U9	1820-0102 1820-0535 1820-0145 1820-0145 1820-0145 1820-0753		1 IC; GGTL; BUFFER/DRIVER/LINE DRIVER INTEGRATED CIRCUIT, DGTL, ECL QUAD 2 INTEGRATED CIRCUIT, DGTL, ECL QUAD 2 INTEGRATED CIRCUIT, DGTL, ECL QUAD 2 INTEGRATED CIRCUIT, DGTL, ECL DUAL 3	0129 0471 0471 0471 0471 2848	3 MC1010P 3 MC1010P 3 MC1010P
A10A2U10 A10A2U11 A10A2U12 A10A2U13 A10A2U14	1820-0753 1820-0736 1820-0753 1820-0756 1820-0753	1	I IC;LIN;DIFFERENTIAL AMPLIFIER IC;DGTL;COUNTER INTEGRATED CIRCUIT, DGTL, ECL DUAL 3 IC;DGTL;COUNTER INTEGRATED CIRCUIT, DGTL, ECL DUAL 3	2848 2848 2848 2848 2848	1820-0736 1820-0753 1820-0736 1820-0736 1820-0736 1820-0753
A10A2U15 A10A2U16 A10A2U17 A10A2U17 A10A2U18 A10A2U19	1820-0557 1820-0145 1820-0143 1820-0145 1820-0102		1 IC:DIGITAL INTEGRATED CIRCUIT, DGTL, ECL QUAD 2 INTEGRATED CIRCUIT, DGTL, ECL J-K FLIP INTEGRATED CIRCUIT, DGTL, ECL QUAD 2 INTEGRATED CIRCUIT, DGTL, ECL J-K FLIP	2848 047 047 047 047	L3 MC1010P 13 MC1027P 13 MC1010P 13 MC1013P
A10A2U20 A10A2VR1 A10A2W1 A10A2W2 A10A2W3 A10A2W3	1902-3002 8120-1823 8120-1824 8120-1825 8120-1826		1 DIDDE; ZENER; 2.37V VZ; .4W MAX PD 1 CABLE ASSY:1.850 1 CABLE ASSY:2.482 1 CABLE ASSY:4.839 1 CABLE ASSY:6.600	047 284 284 284 284	80 8120-1823 80 8120-1824 80 8120-1825 80 8120-1825 80 8120-1826
A10A2W4 A10A2W5 A10A2W6 A10A2W7 A10A2W7 A10A2XA10A	8120-1828 8120-1827 8120-1827 8120-1829 201 1200-0474		1 CABLE ASSY:4.950 1 CABLE ASSY:8.742 1 CABLE ASSY:7.878 2 SOCKET, ELEC, IC 14-CONT DIP SLDR TERM SOCKET, ELEC, IC 14-CONT DIP SLDR TERM	284 284 284 067 067	80 8120-1827 80 8120-1829 776 1CN-143-53 776 1CN-143-53
A10A2XA10A A10A3	08640-60022		1 RISER ASSY		+80 08640+60 0 22
A10A3 XA10A A10A3 XA10A			CONNECTOR, PC EDGE, 15-CONT, DIP SOLDE Connector, PC EDGE, 18-Cont, DIP Solde		785 252-15-30-300 785 252-18-30-300

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Numb
A11 A11	08640-60020	1	FIXED-FREQUENCY MODULATION OSCILLATOR (STANDARD MODULE)	28480	08640-60020
A11C1 A11C2 A11C3 A11C4	0160-3548 0160-0336 0180-0094 0180-0094	1 1 2	CAPACITOR;FXD; .01UF+-1% 100WVDC CAPACITOR;FXD; 100PF+-1% 300WVDC CAPACITOR-FXD; 100UF+75-10% 25VDC AL CAPACITOR-FXD; 100UF+75-10% 25VDC AL	28480 28480 56289 56289	0160-3548 0160-0336 30D107G025DD2 30D107G025DD2
A11C5 A11C6 A11C7 A11C71 A11CR1 A11CR2	0180-2206 0180-1746 0180-1746 1901-0040 1901-0040		CAPACITOR-FXD, 60UF+-10% 6VDC TA-SOLID CAPACITOR-FXD, 15UF+-10% 20VDC TA-SOLID CAPACITOR-FXD, 15UF+-10% 20VDC TA-SOLID DIODE; SWITCHING;SI ; 30V MAX VRM 50MA DIODE; SWITCHING;SI ; 30V MAX VRM 50MA	56289 56289 56289 28480 28480 28480	150D606X9006B2 150D156X9020B2 150D156X9020B2 1901-0040 1901-0040
A11CR3 A1101 † A1102 †	1901-0040 1854-0003 1200-0173 1854-0003 1200-0173	7	DIODE: SWITCHING:SI : 30V MAX VRM 50MA TRANSISTOR NPN SI PD=800MM FT=50MHZ INSULATOR, XSTR, TO- 5, .075 THK TRANSISTOR NPN SI PD=800MM FT=50MHZ INSULATOR, XSTR, TO- 5, .075 THK	28480 28480 28480 28480 28480 28480	1901-0040 1854-0003 1200-0173 1854-0003 1200-0173
A1103 A1104 † A1105 †	1854-0071 1854-0003 1200-0173 1854-0003 1200-0173		TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI PD=800MW FT=50MHZ INSULATOR, XSTR, TO- 5, .075 THK TRANSISTOR NPN SI PD=800MW FT=50MHZ INSULATOR, XSTR, TO- 5, .075 THK	28480 28480 28480 28480 28480 28480	1854-0071 1854-0003 1200-0173 1854-0003 1200-0173
A11Q6 A11R1 A11R2 A11R3 A11R4	1854-0071 0757-0346 0757-0438 0698-3457	1	TRANSISTOR NPN SI PD=300MW FT=200MHZ NDT ASSIGNED Resistor; FXD; 10 CHM1% .125W F TUBULAR Resistor; FXD; 5.11K1% .125W F TUBULAR Resistor; FXD; 316K1% .125W F TUBULAR	28480 24546 24546 19701	1854-0071 C4-1/8-T0-10R0-4 C4-1/8-T0-5111-4 MF4C1/8-T0-3163-
A11R5 A11R6 A11R7 A11R8 A11R8 A11R9	0698-0085 2100-1758 0698-3151 0757-0280 0698-3453	1	RESISTOR; FXD; 2.61K1X .125W F TUBULAR RESISTOR, VAR, TRMR, 1KOHM 5% WW RESISTOR; FXD; 2.87K1X .125W F TUBULAR RESISTOR; FXD; 1K1X .125W F TUBULAR RESISTOR; FXD; 196K1X .125W F TUBULAR	16299 28480 16299 24546 16299	C4-1/8-T0-2611- 2100-1758 C4-1/8-T0-2871- C4-1/8-T0-1001- C4-1/8-T0-1963-
A11R10 A11R11 A11R12 A11R12 A11R13 A11R14	0757-0280 0757-0438 0757-0438 0757-0438 0757-0438 0698-0085		RESISTOR; FXD; 1K1T .125W F TUBULAR RESISTOR; FXD; 5.11K1T .125W F TUBULAR RESISTOR; FXD; 5.11K1T .125W F TUBULAR RESISTOR; FXD; 5.11K1T .125W F TUBULAR RESISTOR; FXD; 2.61K1T .125W F TUBULAR	24546 24546 24546 24546 24546 16299	C4-1/8-T0-1001- C4-1/8-T0-5111- C4-1/8-T0-5111- C4-1/8-T0-5111- C4-1/8-T0-511-
A11R15 A11R16 A11R17 A11R18 A11R18 A11R19	0757-0401 0757-0401 0757-0401 0757-0401 0698-0024	6	RESISTOR; FXD; 100 OHM1% .125W F RESISTOR; FXD; 2.61K1% .5W F TUBULAR	24546 24546 24546 24546 03888	C4-1/8-T0-101-F C4-1/8-T0-101-F C4-1/8-T0-101-F C4-1/8-T0-101-F PME65-1/2-T0-26
A11R20 A11R21 A11R22 A11R23 A11R24	0698-0024 0698-0024 0698-0024 0757-1100 0757-1100	4	RESISTOR; FXD; 2.61K13 .5W F TUBULAR RESISTOR; FXD; 2.61K13 .5W F TUBULAR RESISTOR; FXD; 2.61K13 .5W F TUBULAR RESISTOR; FXD; 600 OHM13 .125W F RESISTOR; FXD; 600 OHM13 .125W F	03888 03888 03888 24546 24546	PME65-1/2-TD-26 PME65-1/2-TD-26 PME65-1/2-TD-26 C4-1/8-TD-601-F C4-1/8-TD-601-F
A11R25 A11P26 A11TP1 A11TP2 A11TP3	0757-0442 0757-0442 0360-1514 0360-1514 0360-1514		RESISTOR; FXD; 10K1X .125W F TUBULAR RESISTOR; FXD; 10K1X .125W F TUBULAR TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD	24546 24546 28480 28480 28480	C4-1/8-T0-1002- 0360-1514 0360-1514
A11TP4 A11TP5 A11TP6 A11U1 A11U1 A11VP1	0360-1514 0360-1514 0360-1514 1826-0007 1902-0049	1	TERMINAL, SLDR STUD TERNINAL, SLDR STUD TERMINAL, SLDR STUD IC;LIN;OPERATIONAL AMPLIFIER DIODE; ZENER; 6.19V VZ; .4W MAX PD	28480 28480 28480 28480 28480 28480	0360-1514 0360-1514 1826-0007
A11VR2	1902-0049		DIODE; ZENER; 6.19V VZ; .4W MAX PD	28480	1902-0049
A11A1	08640-60116	1	FREQUENCY SELECT SWITCH ASSY	28480	08640-60116
A11A1MP1 A11A1R1 A11A1R2	08640-20218 0698-8272 0757-0479	2 2	RESISTOR; FXD; 392K1% .125W F TUBULAR	28480 30983 30983	MF4C1/8-T0-157 MF4C1/8-T0-392
A11A1R3 A11A1R4 A11A1S1	0698-8272 0757-0479 3100-3091	1	RESISTOR; FXD; 157K1% .125W F TUBULAR RESISTOR; FXD; 392K1% .125W F TUBULAR SWITCH:ROTARY	30983 30983 28480	MF4C1/8-T0-392

Ś

(

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A11 A11	08 640-60019 08640-60089	1	VARIABLE-FREQUENCY MODULATION OSC. ASSY (Option 001) Rebuilt 08640-60019, Requires exchange	28480 28480	08640-60019 08640-60089
A11 A11C1	0121-0477	1	CAPACITOR, VAR, 11HORIZ (INCLUDES C2, C3)	80486	2112 MODIFIED
A11C2 A11C3 A11C4 A11C5	0160-2257 0160-2261	2	(PART OF A11C1) (PART OF A11C1) CAPACITOR;FXD; 10PF+-5% 500WVDC CAPACITOR;FXD; 15PF+-5% 500WVDC	28480 28480	0160-2257 0160-2261
A11C6 A11C7 A11C8 A11C9	0140-0213 0140-0213 0160-2055 0121-0036	2	CAPACITOR;FXD; .002UF+-1% 300WVDC CAPACITOR;FXD; .002UF+-1% 300WVDC CAPACITOR;FXD; .01UF+80-20% 100WVDC CAPACITOR; VAR; TRMR; CER; 5.5/18PF	72136 72136 28480 73899	DM19F202F0300WV1CR DM19F202F0300WV1CR 0160-2055 DV11PR18A
A11C10 A11C11 A11C12 A11C13 A11C14	0180-0374 0160-2204 0160-2199 0180-0116 0180-0116		CAPACITOR-FXD, 10UF+-10% 20VDC TA-SOLID CAPACITOR;FXD; 100PF+-5% 300WVDC CAPACITOR;FXD; 30PF+-5% 300WVDC CAPACITOR-FXD, 6.8UF+-10% 35VDC TA CAPACITOR-FXD, 6.8UF+-10% 35VDC TA	56289 28480 28480 56289 56289	150106X9020B2 0160-2204 0160-2199 150D685X9035B2 150D685X9035B2
A11C15 A11C16 A11C16 A11C17 A11C18 A11C19	0180-1714 0180-1714 0180-0116 0180-0116 0180-0228	2	CAPACITOR-FXD, 330UF+-10% 6VDC TA-SOLID CAPACITOR-FXD, 330UF+-10% 6VDC TA-SOLID CAPACITOR-FXD, 6.8UF+-10% 35VDC TA CAPACITOR-FXD, 6.8UF+-10% 35VDC TA CAPACITOR-FXD, 22UF+-10% 15VDC TA-SOLID	56289 56289 56289 56289 56289 56289	150D337X900652 150D337X900652 150D685X903582 150D685X903582 150D685X903582 150D226X901582
A11C20 A11C21 A11C22 A11C23 A11C23 A11CR1	0160-2261 0160-2236 0180-2207 0180-2207 1901-0040	1	CAPACITOR;FXD; 15PF+-5% 500WVDC CAPACITOR;FXD; 1PF+25PF 500WVDC CAPACITOR-FXD; 100UF+-10% 10VDC TA CAPACITOR-FXD, 100UF+-10% 10VDC TA DIODE; SWITCHING;S1; 30V MAX VRM 50MA	28480 28480 56289 56289 28480	0160-2261 0160-2236 1500107X9010R2 1500107X9010R2 1901-0040
A11CR2 A11CR3 A11CR4 A11CR5 A11CR6	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040		DIDDE; SWITCHING; SI ; 30V MAX VRH 50MÅ Diode; Switching; SI ; 30V Max VRH 50Må Diode; Switching; SI ; 30V Max VRM 50Må Diode; Switching; SI ; 30V Max VRM 50Må Diode; Switching; SI ; 30V Max VRM 50Må	28480 28480 28480 28480 28480 28480	1901-0040 1901-0040 1901-0040 1901-0040 1901-0040
A11CR7 A11CR8 A11CR9 A11CR10 A11MP1	1901-0040 1901-0040 1901-0040 1901-0040 0340-0037	2	DIGDE; SWITCHING; S1; 30V MAX VRM 50MA Digde; Switching; S1; 30V Max VRM 50MA Digde; Switching; S1; 30V Max VRM 50MA Digde; Switching; S1; 30V Max VRM 50MA Terminal, SLDR Stud, .098 SHK DIA	28480 28480 28480 28480 28480 28480	1901-0040 1901-0040 1901-0040 1901-0040 0340-0037
A11MP2 A11MP3 A11MP4 A11MP5 A11MP6	0340-0039 1430-0764 08640-00006 08640-20090 08640-00008	21141	TERMINAL BUSHING — TEFLON: MOUNTS IN Gear Spur Cover:Auddio Oscillator Support:Cover Audio Oscillator Cover:Back a Oscillator	28480 28480 28480 28480 28480 28480	0340-0039 1430-0764 08640-00006 08640-20099 08640-00008
A11MP7 A11MP8 A11MP9 A11MP10 A11MP11	08640-20062 2200-0103 0570-0111 2190-0004 2260-0009	3 3 4 2	SPACER:BUSHING SCREW;MACHINE; 4-40 UNC-2A .25 IN PAN SCREW;MACHINE; 6-32 UNC-2A .375 IN WASHER; LOCK; INT; 4 .115 ID .27 OD NUT, HEX 4-40 .094 X .25, STL, NI PL	28480 28480 95987 78189 78189	2200-0103 N-632-3/8 SF 1904-00
A11MP12 A11MP13 A11Q1 A11Q2	0403-0026 4040-0749 1480-0073 1853-0020 1854-0071	. 7	GLIDE:NYLON Extractor:PC board, brown PIN:DRIVE 0.250m LG Transistor PNP SI PD=300mw FT=150mHZ Transistor NPN SI PD=300mw FT=200mHZ .	28480 28480 00000 28480 28480 28480	4040-0749 OBD 1853-0020
A11Q3 † A11Q4 A11Q5 A11Q6 †	1853-0276 1200-0173 1854-0351 1854-0003 1854-0003 1200-0173	2 2	TRANSISTOR PNP SI PD=360MW FT=250MHZ INSULATOR, XSTR, TO- 5, 075 THK TRANSISTOR NPN SI PD=360MW FT=300MHZ TRANSISTOR NPN SI PD=800MW FT=50MHZ TRANSISTOR NPN SI PD=800MW FT=50MHZ INSULATOR, XSTB TO-5, 075 THK	28480 28480 28480 28480 28480 28480 28480	1200-0173 1854-0351 1854-0003 1854-0003
A11Q7 A11Q8 A11Q9 A11Q10	1854-0351 1853-0276 1854-0071 1853-0020		TRANSISTOR NPN SI PD=360MW FT=300MHZ TRANSISTOR PNP SI PD=360MW FT=250MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR PNP SI PD=300MW FT=150MHZ	2848 2848 2848 2848 2848	0 1853-0276 0 1854-0071 0 1853-0020
A11011 A11012 A11R1 A11R2 A11R3	1855-0062 1854-0071 0698-8294 0698-3453 0698-4508	2	TRANSISTOR, JFET N-CHAN D-MODE SI TRANSISTOR NPN SI PD=300MW FT=200MHZ RESISTOR; FXD; 0.0215 0HMIX .5W F RESISTOR; FXD; 196KIX .125W F TUBULAR RESISTOR; FXD; 78.7K1X .125W F TUBULAR	2848 2848 2848 1629 245 4	0 1854-0071 0 0698-8294 9 C4-1/8-T0-1963-F
AllR4 AllR5 AllR6 AllR7 AllR8	0698-8294 0698-3451 0698-3453 0757-0401 0757-0401	2	RESISTOR; FXD; .0215 DHM1% .5W F RESISTOR; FXD; 133K1% .125W F TUBULAR RESISTOR; FXD; 196K1% .125W F TUBULAR RESISTOR; FXD; 100 DHM1% .125W F RESISTOR; FXD; 100 DHM1% .125W F	2848 1629 1629 2454 2454	9 C4-1/8-T0-1333-F 9 C4-1/8-T0-1963-F 6 C4-1/8-T0-101-F

};

Ŋ

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Numbe
A11P9 A11R10 A11R11 A11R12 A11R13	0757-0441 0757-0447 0757-0199 0757-0442 0757-0279	1	RESISTOR; FXD; 8.25K1% .125W F TUBULAR RESISTOR; FXD; 16.2K1% .125W F TUBULAR RESISTOR; FXD; 21.5K1% .125W F TUBULAR RESISTOR; FXD; 10K1% .125W F TUBULAR RESISTOR; FXD; 3.16K1% .125W F TUBULAR	24546 24546 24546 24546 24546 24546	C4-1/8-T0-8251-F C4-1/8-T0-1622-F C4-1/8-T0-2152-F C4-1/8-T0-1002-F C4-1/8-T0-3161-F
A11R14 A11P15 A11R16 A11R17 A11R18	0757-0199 0698-0082 0757-0200 0757-0442 0757-0401		RESISTOR; FXD; 21.5K1% .125W F TUBULAR RESISTOR; FXD; 464 OHM1% .125W F RESISTOR; FXD; 5.62K1% .125W F TUBULAR RESISTOR; FXD; 10K1% .125W F TUBULAR RESISTOR; FXD; 10K1% .125W F	24546 16299 24546 24546 24546	C4-1/8-T0-2152-F C4-1/8-T0-4640-F C4-1/8-T0-5621-F C4-1/8-T0-1002-F C4-1/8-T0-101-F
A11R19 A11R20 A11R21 A11R22 A11R23	0757-0395 0757-0401 0757-0395 0757-0395 0757-0346		RESISTOR; FXD; 56.2 OHM1% .125W F RESISTOR; FXD; 100 OHM1% .125W F RESISTOR; FXD; 56.2 OHM1% .125W F RESISTOR; FXD; 56.2 OHM1% .125W F RESISTOR; FXD; 10 OHM1% .125W F TUBULAR	24546 24546 24546 24546 24546 24546	C4-1/8-T0-56R2-F C4-1/8-T0-101-F C4-1/8-T0-56R2-F C4-1/8-T0-56R2-F C4-1/8-T0-10R0-F
A11R24 A11R25 A11R26 A11R27 A11R28	0757-0346 0757-0442 0698-3156 0757-0280 0698-3132		RESISTOR; FXD; 10 OHM1% .125W F TUBULAR RESISTOR; FXD; 10K1% .125W F TUBULAR RESISTOR; FXD; 14.7K1% .125W F TUBULAR RESISTOR; FXD; 1K1% .125W F TUBULAR RESISTOR; FXD; 261 OHM1% .125W F	24546 24546 16299 24546 16299	C4-1/8-T0-10R0-F C4-1/8-T0-1002-F C4-1/8-T0-1472-F C4-1/8-T0-1001-F C4-1/8-T0-2610-F
A11R29 A11R30 A11R31 A11R32 A11R32 A11R33	0757-0346 0757-0346 0757-0280 0698-3453		NOT ASSIGNED Resistor; fxd; 10 0Hm1% -125W F TUBULAR Resistor; fxd; 10 0Hm1% -125W F TUBULAR Resistor; fxd; 1k1% -125W F TUBULAR Resistor; fxd; 196K1% -125W F TUBULAR	24546 24546 24546 16299	C4-1/8-T0-10R0-F C4-1/8-T0-10R0-F C4-1/8-T0-1001-F C4-1/8-T0-1963-F
A11R34 A11R35 A11R36 A11R37 A11R38	0698-3152 2100-2521 0757-0290 0757-0279 0757-0199		RESISTOR; FXD; 3.48K1% .125W F TUBULAR RESISTOR, VAR, TRMR, 2KOHM 10% C RESISTOR; FXD; 6.19K1% .125W F TUBULAR RESISTOR; FXD; 3.16K1% .125W F TUBULAR RESISTOR; FXD; 21.5K1% .125W F TUBULAR	16299 19701 30983 24546 24546	C4-1/8-T0-3481-F ET50X202 MF4C1/8-T0-6191-F C4-1/8-T0-3161-F C4-1/8-T0-2152-F
A11R39 A11R40 A11R41 A11R42 A11R43	0698-3150 2100-2521 0698-0082 0757-0200 0757-0401		RESISTOR; FXD; 2.37K1% .125W F TUBULAR RESISTOR, VAR, TRMR, 2KOHM 10% C RESISTOR; FXD; 464 OHM1% .125W F RESISTOR; FXD; 5.62K1% .125W F TUBULAR RESISTOR; FXD; 100 OHM1% .125W F	16299 19701 16299 24546 24546	C4-1/8-T0-2371-F ET50X202 C4-1/8-T0-4640-F C4-1/8-T0-5621-F C4-1/8-T0-101-F
A11R44 A11R45 A11R46 A11R47 A11R48	0757-0401 0757-0442 0757-0401 0757-0401 0698-3156		RESISTOR; FXD; 100 DHM1% .125W F RESISTOR; FXD; 10K1% .125W F TUBULAR RESISTOR; FXD; 100 DHM1% .125W F RESISTOR; FXD; 100 DHM1% .125W F RESISTOR; FXD; 14.7K1% .125W F TUBULAR	24546 24546 24546 24546 24546 16299	C4-1/8-T0-101-F C4-1/8-T0-1002-F C4-1/8-T0-101-F C4-1/8-T0-101-F C4-1/8-T0-101-F
A11R49 A11R50 A11R51 A11R52 A11R53	0698-0024 0698-0024 0757-0395 0757-0395 0757-1100		RESISTOR; FXD; 2.61K1% .5W F TUBULAR RESISTOR; FXD; 2.61K1% .5W F TUBULAR RESISTOR; FXD; 56.2 OHM1% .125W F RESISTOR; FXD; 56.2 OHM1% .125W F RESISTOR; FXD; 600 OHM1% .125W F	03888 03888 24546 24546 24546	PME65-1/2-T0-261 PME65-1/2-T0-261 C4-1/8-T0-56R2-F C4-1/8-T0-56R2-F C4-1/8-T0-56R2-F C4-1/8-T0-601-F
A11R 54 A11R 55 A11R 56	0757-1100 0757-0442 0757-0442		RESISTOR; FXD; 600 DHM1% .125W F RESISTOR; FXD; 10K1% .125W F TUBULAR RESISTOR; FXD; 10K1% .125W F TUBULAR	24546 24546 24546	C4-1/8-T0-601-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F
Alirti	5080-1718	1	THERMISTOR	28480	5080-1718
A11TP1 A11TP2	0360-1514 0360-1514		TERMINAL, SLDR STUD TERMINAL, SLDR STUD	28480 28480	
A11TP3 A11TP4 A11TP5 A11TP6 A11VR1	0360-1514 0360-1514 0360-1514 0360-1514 1902-3059	2	TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD DIODE; ZENER; 3.83V VZ; .4W MAX PD	28480 28480 28480 28480 28480 04713	0360-1514 0360-1514 0360-1514
A11VR2	1902-3059		DIODE; ZENER; 3.83V VZ; .4W MAX PD	04713	SZ 10939-62
A11A1	08640-60149	1	FREQUENCY SELECT SWITCH ASSY	28480	08640-60149
A11A1MP1 A11A1MP2 A11A1MP3	08640-20218 08640-20205 1430-0763	2 2	HOUSING:GEAR SPROCKET, AUDIO GEAR SPUR GEAR SPUR	28480 28480 28480	08640-20205 1430-0763
A11A1MP4 A11A1MP5 A11A1MP6 A11A1R1 A11A1R1 A11A1R2	08640-20084 3030-0196 3030→0007 0698-4471 0757-0199	1 6 2	SHAFT:AUDIO OSCILLATOR SCREW;SET; 4-40 UNC-3A .188 IN SCREW;SET; 4-40 UNC-3A .125 IN RESISTOR; FXD; 7.15K1% .125W F TUBULAR RESISTOR; FXD; 21.5K1% .125W F TUBULAR	28480 28480 28480 24546 24546	3030-0196 3030-0007 C4-1/8-T0-7151-

É

(

Table 6	5-3.	Replaceable	Parts
---------	------	-------------	-------

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A11A1R3 A11A1R4 A11A1R5 A11A1R6 A11A1R6 A11A1R8 A11A1R8	0698-3454 0698-5903 0698-4471 0757-0199 0698-3454 0698-5903	2	RESISTOR; FXD; 215K1X .125W F TUBULAR RESISTOR; FXD; 2.4M1X .5W F TUBULAR RESISTOR; FXD; 7.15K1X .125W F TUBULAR RESISTOR; FXD; 21.5K1X .125W F TUBULAR RESISTOR; FXD; 21.5K1X .125W F TUBULAR RESISTOR; FXD; 2.4M1X .5W F TUBULAR SWITCH ASSY:44DD10 DSCILLATOR	16299 19701 24546 16299 19701 28480	C4-1/8-T0-2153-F MF7C1/2-T0-2404-F C4-1/8-T0-7151-F C4-1/8-T0-2152-F C4-1/8-T0-2153-F MF7C1/2-T0-2404-F 08640-60108
A11A151	08640-60108 3100-3081	i	SWITCH:ROTARY	28480	3100-3081

See introduction to this section for ordering information

٦

Table 6-3.	Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Numbe
A12	08640-60003	1	RECTIFIER ASSY	28480	08640-60003
A12C1 A12C2 A12C3 A12C4	0160-0168 0160-0168 0160-0168 0160-0168	5	CAPACITOR;FXD; .1UF+-10% 200WVDC CAPACITOR;FXD; .1UF+-10% 200WVDC CAPACITOR;FXD; .1UF+-10% 200WVDC CAPACITOR;FXD; .1UF+-10% 200WVDC	56289 56289 56289 56289 56289	292P10492 292P10492 292P10492 292P10492 292P10492
A12C5 A12CR1 A12CP2 A12CP3 A12CP3 A12CP4	0160-0168 1901-0418 1901-0418 1901-0418 1901-0418	20	CAPACITOR;FXD; .1UF+-10% 200WVDC DIODE; PWR RECT; SI; 400V MAX VRM 1.5A DIODE; PWR RECT; SI; 400V MAX VRM 1.5A DIODE; PWR RECT; SI; 400V MAX VRM 1.5A DIODE; PWR RECT; SI; 400V MAX VRM 1.5A	56289 04713 04713 04713 04713 04713	292P10492 SR1846-12 SR1846-12 SR1846-12 SR1846-12 SR1846-12
A12CR5 A12CR6 A12CR7 A12CR8 A12CR8 A12CR9	1901-0418 1901-0418 1901-0418 1901-0418 1901-0418		DIODE; PWR RECT; SI; 400V MAX VRM 1.5A DIODE; PWR RECT; SI; 400V MAX VRM 1.5A	04713 04713 04713 04713 04713 04713	SR1846-12 SR1846-12 SR1846-12 SR1846-12 SR1846-12 SR1846-12
A12CR10 A12CR11 A12CR12 A12CR13 A12CR14	1901-0418 1901-0418 1901-0418 1901-0418 1901-0418		DIODE; PWR RECT; SI; 400V MAX VRM 1.5A DIODE; PWR RECT; SI; 400V MAX VRM 1.5A	04713 04713 04713 04713 04713	SR1846-12 SR1846-12 SR1846-12 SR1846-12 SR1846-12 SR1846-12
A12CR15 A12CR16 A12CR17 A12CR18 A12CR18 A12CR19	1901-0418 1901-0418 1901-0418 1901-0418 1901-0418 1901-0418		DIODE; PWR RECT; SI; 400V MAX VRM 1.5A DIODE; PWR RECT; SI; 400V MAX VRM 1.5A	04713 04713 04713 04713 04713 04713	SR1846-12 SR1846-12 SR1846-12 SR1846-12 SR1846-12 SR1846-12
A12CR20 A12MP1 A12Q1 A12R1 A12R2	1901-0418 0403-0026 1884-0012 0757-0401 0698-3447	6	DIODE; PWR RECT; SI; 400V MAX VRM 1.5A GLIDE:NYLON Thyristor, SCR, Jedec 2N3528 Resistor; FXD; 100 OHM1X .125W F Resistor; FXD; 422 OHM1X .125W F	04713 28480 02735 24546 16299	SR1846-12 0403-0026 2N3528 C4-1/8-T0-101-F C4-1/8-T0-422R-F
A12R3 A12R4 A12R5 A12R6 A12R7	0757-0199 0757-0442 0757-0442 0757-0442 0757-0442		RESISTOR; FXD; 21.5K1% .125W F TUBULAR RESISTOR; FXD; 10K1% .125W F TUBULAR	24546 24546 24546 24546 24546 24546	C4-1/8-T0-2152-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F
A12VR1	1902-3393	1	DIODE; ZENER; 75V VZ; .4W MAX PD	04713	SZ 10939-434
A13	08640-60002	1	MODULATION/METERING MOTHER BOARD ASSY	28480	08640-60002
A13C1 A13C2 A13C3 A13C4	0180-2208 0180-2208 0180-2208 0180-2208 0180-2208	5	CAPACITOR-FXD, 220UF+-10% 10VDC TA CAPACITOR-FXD, 220UF+-10% 10VDC TA CAPACITOR-FXD, 220UF+-10% 10VDC TA CAPACITOR-FXD, 220UF+-10% 10VDC TA	56289 56289 56289 56289 56289	150D227X9010S2 150D227X9010S2 150D227X9010S2 150D227X9010S2 150D227X9010S2
A13J1 A13J2 A13J3 A13J4 A13J4 A13J5	1250-0257 1251-3055 1250-0257 1250-0257 1250-0257 1251-3055	3 2	CONNECTOR-CDAX, SM8, 50 DHM MALE Connector Strip:8 male contact Connector-CDAX, SM8, 50 DHM Male Connector-COAX, SM8, 50 DHM Male Connector Strip:8 male contact	28480 74868 28480 28480 74868	1250-0257 221-70 1250-0257 1250-0257 221-70
A 13MP1 A 13MP2 A 13MP3 A 13R1 A 13R2	0403-0026 08640-20211 08640-40063 0757-0004 0757-0443	4	GLIDE:NYLON Guide:Connector Guide:Slide Switch Resistor; FXO; 860 OHM1% .5W F Tubular Resistor; FXD; 11k1% .125W F Tubular	28480 28480 28480 30983 24546	0403-0026 08640-20211 08640-40063 MF7C1/2-T0-861-F C4-1/8-T0-1102-F
A13R3 A13R4 A13R5	2100-1986 0757-0460 0757-0460	1	RESISTOR, VAR, TRMR, 1KOHM 10% C Resistor; FXD; 61.9%1% .125W F TUBULAR Resistor; FXD; 61.9%1% .125W F TUBULAR	28480 24546 24546	2100-1986 C4-1/8-T0-6192-F C4-1/8-T0-6192-F
A1351	08640-60152 1460-1174 5020-3440 5040-0320 5040-0335	1 7 2 1 2	SWITCH:PC SLIDE 4R SPRING, LEAF SPRING:DETENT SLIDE:4 ROW, 16 POSITION LEVER-SWITCH-GRAY	28480 28480 28480 28480 28480 28480	08640-60152 1460-1174 5020-3440 5040-0320 5040-0335
A1352 A13XA2	08640-60153 1460-1174 5020-3440 5040-0319 5040-0335 1251-2571	1	SWITCH:PC SLIDE 3R Spring, leaf Spring:detent Slide:3 row, 12 position Lever-Switch-Gray Connector, PC edge, 15-cont, dip Solder	28480 28480 28480 28480 28480 28480 26742	
A13XA3A4 A13XA4 A13XA5 A13XA7 A13XA8A3	1251-0472 1251-2571 1251-2571 1251-2571 5060-0109	1	CONNECTOR, PC EDGE, 6-CONT, DIP SOLDER CONNECTOR, PC EDGE, 15-CONT, DIP SOLDER CONNECTOR, PC EDGE, 15-CONT, DIP SOLDER CONNECTOR, PC EDGE, 15-CONT, DIP SOLDER CONNECTOR: 15 CONTACTS	71785 26742 26742 26742 26742 28480	91-6915-0702-00 91-6915-0702-00 91-6915-0702-00

(

Ć

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A13XA11 A13XA15	1251-2571 1251-2035		CONNECTOR, PC EDGE, 15-CONT, DIP SOLDER Connector, PC EDGE, 15-CONT, DIP SOLDER	26742 71785	91-6915-0702-00 252-15-30-300
A14	5060-9409	1	LINE MODULE WITH FILTER, JADE GRAY	28480	5060-9409
A14P1	5020-8122	1	LINE VOLTAGE SELECTION CARD	28480	5020-8122
A15	08640-60018	1	RISER ASSY	28480	08640-60018
A15MP1 A15MP2	0403-0153 0403-0154	1 1 1	GUIDE, PC BOARD, 1 L .25 W LEXAN, BROWN GUIDE, PC BOARD, 1 L .25 W LEXAN, RED GUIDE, PC BOARD, 1 L .25 W LEXAN, ORANGE	28480 28480 28480	0403-0153 0403-0154 0403-0155
A15MP3 A15XA17	0403-0155 1251-3308	1	CONNECTOR, PC EDGE, 15-CONT, DIP SOLDER	71785	252-12-30-032
A16	08640-60119	1	FAN MOTOR ASSY	28480	08640-60119
A1681 A1691	3140-0490 1251-0198 5040-0327	1 2 2	MOTOR, ELEC, BRUSHLESS 10VDC 2550 RPM Connector, PC EDGE, 6-Cont, Solder Eye Hood:Connector	28480 71785 28480	3140-0490 251-06-30-261 5040-0327
A17	08640-60001	. 1	POWER SUPPLY MOTHER BOARD ASSY	28480	08640-60001
A17XA12	1251-2034	3	CONNECTOR, PC EDGE, 10-CONT, DIP SOLDER	71785	252-10-30-300
A17XA18 A17XA20 A17XA22 A17XA24 A17XA26	1251-2571 1251-2571 1251-2571 1251-2034 1251-2034		CONNECTOR, PC EDGE, 15-CONT, DIP SOLDER CONNECTOR, PC EDGE, 15-CONT, DIP SOLDER CONNECTOR, PC EDGE, 15-CONT, DIP SOLDER CONNECTOR, PC EDGE, 10-CONT, DIP SOLDER CONNECTOR, PC EDGE, 10-CONT, DIP SOLDER	26742 26742 26742 71785 71785	91-6915-0702-00 91-6915-0702-00 91-6915-0702-00 252-10-30-300 252-10-30-300
A18	08640-60004	1	-5.2V REGULATOR & FAN DRIVER ASSY	28480	0 8640-60994
A18C1 A18C2 A18C3 A18C4 A18C5	0180-0229 0160-3534 0180-02214 0180-0197 0160-2055	5 4 1	CAPACITOR-FXD, 33UF+-103 10VDC TA-SOLID CAPACITOR;FXD; 510PF+-53 100WVDC CAPACITOR-FXD, 90UF+75-103 16VDC AL CAPACITOR-FXD, 2.2UF++103 20VDC TA CAPACITOR;FXD, .01UF+80-203 100WVDC	56289 28480 56289 56289 28480	1500336X9010B2 0160-3534 30D9066016CC2 150D225X9020A2 0160-2055
A18CR1 A18CR2 A18CR3 A18CR3 A18CR4 A18CR5	1901-0040 1901-0025 1901-0025 1901-0040 1901-0040		DIODE; SWITCHING;SI ; 30V MAX VRM 50MA DIODE; GEN PRP;SI ; 100V MAX VRM 200MA DIODE; GEN PRP;SI ; 100V MAX VRM 200MA DIODE; SWITCHING;SI ; 30V MAX VRM 50MA DIODE; SWITCHING;SI ; 30V MAX VRM 50MA	28480 28480 28480 28480 28480 28480	1901-0040 1901-0025 1901-0025 1901-0040 1901-0040
A18CR6 A18CR7 A18CR8 A18CR9 A18CR10	1901-0159 1901-0040 1901-0040 1901-0049 1901-0049	5 2	DIODE; PWR RECT:SI ; 400V MAX VRM 750MA DIODE; SWITCHING;SI ; 30V MAX VRM 50MA DIODE; SWITCHING;SI ; 30V MAX VRM 50MA DIODE; PWR RECT;SI ; 50V MAX VRM 750MA DIODE; PWR RECT;SI ; 50V MAX VRM 750MA	04713 28480 28480 28480 28480 28480	1901-0040 1901-0040 1901-0049
A18CR11 A18CR12 A18DS1 A18F1	1901-0040 1901-0050 1990-0326 2110-0425	5 1	DIODE; SWITCHING;SI ; 30V MAX VRM 50MA DIODE; SWITCHING;SI ; 80V MAX VRM 200MA PHOTO-DEVICE, DIO VSBL LT EMTR 200MW PD FUSE:2 AMP	28480 28480 28480 28480 28480	1901-0050 1990-0326
A18MP1 A18Q1 A18Q2 🕇	4040-0752 1480-0073 1853-0020 1854-0039 1200-0173	2	EXTRACTOR:PC BOARD, YELLOW PIN:DRIVE 0.250° LG TRANSISTOR PMP SI PD=300MW FT≃150MHZ TRANSISTOR NPN 2N3053 SI PD=1W INSULATOR, XSTR, TO- 5, .075 THK	28480 00000 28480 04713 28480	08D 1853-0020 2N3053
A18Q3 A18Q4 A18Q5	1200-0173 1884-0012 1854-0003 1853-0027 1200-0173	4	THYRISTOR, SCR, JEDEC 2N3528 TRANSISTOR NPN SI PD=800MW FT=50MHZ TRANSISTOR PNP SI PD=1W FT=100MHZ INSULATOR, XSTR, TO- 5, .075 THK	02735 28480 28480 28480	1854-0003 1853-0027
A1806 A1807 A1808 A1808	1853-0050 1853-0027 1200-0173 1853-0050 1853-0050	4	TRANSISTOR PNP SI PD=360MW FT=100MHZ TRANSISTOR PNP SI PD=1W FT=100MHZ INSULATOR, XSTR, TO- 5, 075 THK TRANSISTOR PNP SI PD=360MW FT=100MHZ TRANSISTOR PNP SI PD=360MW FT=100MHZ	28480 28480 28480 28480 28480 28480	1853-0027 1200-0173 1853-0050

Table 6-3. Replaceable Parts

ノ [Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
ſ						
	A18010 A18011 A18012	1853-0027 1200-0173 1853-0050 1853-0027 1200-0173		TRANSISTOR PNP SI PD=1W FT=100MHZ INSULATOR, XSTR, TO- 5, .075 THK TRANSISTOR PNP SI PD=360MW FT=100MHZ TRANSISTOR PNP SI PD=1W FT=100MHZ INSULATOR, XSTR, TO- 5, .075 THK	28480 28480 28480 28480 28489 28489	1853-0027 1200-0173 1853-0050 1853-0027 1200-0173
	A18R1 A18R2 A18P3 A18R4 A18R5	0757-0317 2100-3123 0757-0278 0683-0475 0757-0420	4	RESISTOR; FXD; 1.33K1% .125W F TUBULAR RESISTOR,VAR,TRMR 500 OHM 10% C RESISTOR; FXD; 1.78K1% .125W F TUBULAR RESISTOR; FXD; 4.7 OHM5% .25W CC RESISTOR; FXD; 750 OHM1% .125W F	24546 32997 24546 01121 24546	C4-1/8-T0-1331-F 3006P-1-501 C4-1/8-T0-1781-F C847G5 C4-1/8-T0-751-F
	A1886 A1887 A1888 A1888 A1889 A1889	0698-3440 0757-0420 0698-3161 0811-2813 0757-0316	3 2	RESISTOR; FXD; 196 DHM1% .125W F RESISTOR; FXD; 750 OHM1% .125W F RESISTOR; FXD; 38.3K1% .125W F TUBULAR RESISTOR; FXD; 1 OHM5% .5W PPN TUBULAR RESISTOR; FXD; 42.2 OHM1% .125W F	16299 24546 16299 91637 24546	C4-1/8-T0-196R-F C4-1/8-T0-751-F C4-1/8-T0-3832-F RS1/2-T2-1R0-J C4-1/8-T0-42R2-F
	A18R11 A18R12 A18R13 A18R14 A18R15	0757-0317 0757-0397 0698-3447 0757-0290 0757-0442		RESISTOR; FXD; 1.33K1% .125W F TUBULAR RESISTOR; FXD; 68.1 OHM1% .125W F RESISTOR; FXD; 422 OHM1% .125W F RESISTOR; FXD; 6.19K1% .125W F TUBULAR RESISTOR; FXD; 10K1% .125W F TUBULAR	24546 24546 16299 30983 24546	C4-1/8-T0-1331-F C4-1/8-T0-68R1-F C4-1/8-T0-422R-F MF4C1/8-T0-6191-F C4-1/8-T0-1002-F
	A18R16 A18R17 A18R18 A18R19 A18R19 A18TP1	0811-1553 0698-3438 0698-3438 0698-7246 0360-1514	1 4	RESISTOR; FXD; .68 OHM5% 2W PW TUBULAR RESISTOR; FXD; 147 OHM1% .125W F RESISTOR; FXD; 147 OHM1% .125W F RESISTOR; FXD; 2.61K2% .05W F TUBULAR TERMINAL, SLDR STUD	75042 16299 16299 24546 28480	BWH2-11/16-J C4-1/8-T0-147R-F C4-1/8-T0-147R-F C3-1/8-T0-2611-G 0360-1514
	A18TP2 A18TP3 A18TP4 A18TP5 A18TP6	0360-1514 0360-1514 0360-1514 0360-1514 0360-1514 0360-1514		TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD	28480 28480 28480 28480 28480 28480	0360-1514 0360-1514 0360-1514 0360-1514 0360-1514
)	A18U1 A18VR1 A18VR2 A18VR3 A18XF1A	1826-0010 1902-3005 1902-3094 1902-0049 1251-2313	5 2 1	IC;LIN;VOLTAGE REGULATOR DIODE; ZENER; 2.43V VZ; .4W MAX PD DIODE; ZENER; 5.11V VZ; .4W MAX PD DIODE; ZENER; 6.19V VZ; .4W MAX PD CONNECTOR;1-CONT SKT .04 DIA	07263 04713 04713 28480 24995	723HM SZ 10939-5 SZ 10939-99 1902-0049 3-332070-5
***	A18XF18	1251-2313		CONNECTOR,1-CONT SKT .04 DIA	24995	3-332070-5
	A19			NOT ASSIGNED		
i	A20	08640-60005	1	+5.2V & +44.6V REGULATOR ASSY	28480	08640-60005
	A20C1	0160-0153	1	CAPACITOR;FXD; .001UF+-10% 200WVDC	56289	292P10292
	A20C2 A20C3 A20C4 A20C5 A20C6	0180-0229 0180-0234 0180-0228 0160-0300 0180-2208	1 1	CAPACITOR-FXD, 33UF+-10% 10VDC TA-SOLID CAPACITOR-FXD; 33UF+-20% 75VDC TA-WET CAPACITOR-FXD, 22UF+-10% 15VDC TA-SOLID CAPACITORFFXD; .0027UF+-10% 200WVDC CAPACITOR-FXD, 220UF+-10% 10VDC TA	56289 56289 56289 56289 56289 56289	150D336X901082 109D336X0075F2 150D226X901582 292P27292 150D227X901052
	A20C7 A20C8 A20CR1 A20CR2 A20CR3	0180-0229 0160-3094 1901-0159 1901-0050 1901-0159		CAPACITOR-FXD, 33UF+-10% 10VDC TA-SOLID CAPACITOR;FXD; .1UF+-10% 100WVDC DIODE; PWR RECT;SI ; 400V MAX VRM 750MA DIODE; SWITCHING;SI ; 80V MAX VRM 200MA DIODE; PWR RECT;SI ; 400V MAX VRM 750MA	56289 28480 04713 28480 . 04713	150D336X901082 0160-3094 SR1358-4 1901~0050 SR1358-4
	A20CR4 A20CR5 A20DS1 A20DS2 A20DS2 A20F1	1901-0050 1901-0050 1990-0326 1990-0326 2110-0332	1	DIODE; SWITCHING;SI ; 80V MAX VRM 200MA DIODE; SWITCHING;SI ; 80V MAX VRM 20DMA PHOTO-DEVICE, DIO VSBL LT EMTR 200MW PD PHOTO-DEVICE, DIO VSBL LT EMTR 200MW PD FUSE, 3A 125V	28480 28480 28480 28480 28480 71400	1901-0050 1901-0050 1990-0326 1990-0326 GMW 3
	A20F2 A20MP1	2110-0047 4040-0748 1480-0073	1	FUSE, 1A 125V Extractor:PC Board, Black PIN:DRIVE 0.250° Lg	71400 28480 00000	GMW-1 4040-0748 08D
	A 20MP2	4040-0753 1480-0073	2	EXTRACTOR:PC BOARD, GREEN PIN:DRIVE 0.250" LG	28480 00000	4040-0753 OBD
	A2001 A2002 † A2003 †	1884-0012 1854-0039 1200-0173 1854-0022 1200-0173		THYRISTOR, SCR, JEDEC 2N3528 TRANSISTOR NPN 2N3053 SI PD=1W INSULATOR, XSTR, TO- 5, .075 THK TRANSISTOR NPN SI PD=700MW FT=50MHZ INSULATOR, XSTR, TO-5, .075 THK	02735 04713 28480 07263 28480	2N3528 2N3053 1200-0173 S17843 1200-0173
)	A2004 A2005 A2006	1853-0038 1200-0173 1853-0020 1854-0023	1	TRANSISTOR PNP SI PD=1W FT=100MHZ INSULATOR, XSTR, TO- 5, 075 THK TRANSISTOR PNP SI PD=300MW FT=150MHZ TRANSISTOR NPN SI PD=360MW FT=15MHZ	28480 28480 28480 28480 28480	1853-0038 1200-0173 1853-0020 1854-0023

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A2007 A20R1 A20R2 A20R3 A20R3 A20R4	1884-0012 0698-3160 0698-3438 0757-0462 0698-0083	1	THYRISTOR, SCR, JEDEC 2N3528 RESISTOR; FXD; 31.6K1% .125W F TUBULAR RESISTOR; FXD; 147 OHM1% .125W F RESISTOR; FXD; 156K1% .125W F TUBULAR RESISTOR; FXD; 1.96K1% .125W F TUBULAR	02735 16299 16299 24546 16299	2N3528 C4-1/8-T0-3162-F C4-1/8-T0-147R-F C4-1/8-T0-7592-F C4-1/8-T0-1961-F
A20R5 A20R6 A20R7 A20R8 A20R9	0698-3407 0698-3155 0698-3449 2100-3154 0757-0438	1	RESISTOR; FXD; 1.96K1% .5W F TUBULAR RESISTOR; FXD; 4.64K1% .125W F TUBULAR RESISTOR; FXD; 28.7K1% .125W F TUBULAR RESISTOR,VAR,TRMR 1K OHM 10% C RESISTOR; FXD; 5.11K1% .125W F TUBULAR	19701 16299 16299 32997 24546	MF7C1/2-T0-1961-F C4-1/8-T0-4641-F C4-1/8-T0-2872-F 3006P-1-102 C4-1/8-T0-5111-F
A20R10 A20R11 A20R12 A20R13 A20R14	0811-2813 0757-0158 0757-0397 0698-3447 0811-1666	1	RESISTOR; FXD; 1 0HM5% .5W PPW TUBULAR RESISTOR; FXD; 619 0HM1% .5W F TUBULAR RESISTOR; FXD; 68.1 0HM1% .125W F RESISTOR; FXD; 422 0HM1% .125W F RESISTOR; FXD; 1 0HM5% 2W PW TUBULAR	91637 30983 24546 16299 75042	RS1/2-T2-1RO-J MF7C1/2-T0-619R-F C4-1/8-T0-68R1-F C4-1/8-T0-422R-F BWH2-1RO-J
A20R15 A20R16 A20R17 A20R18 A20R19	0757-0420 2100-3123 0698-3150 0757-0416 0698-3440		RESISTOR; FXD; 750 0HM1% .125W F Resistor,var,trmr 500 0HM 10% C Resistor; FXD; 2.37K1% .125W F TUBULAR Resistor; FXD; 511 0HM1% .125W F Resistor; FXD; 196 0HM1% .125W F	24546 32997 16299 24546 16299	C4-1/8-T0-751-F 3096P-1-501 C4-1/8-T0-2371-F C4-1/8-T0-511R-F C4-1/8-T0-196R-F
A20R20 A20R21 A20R22 A20R23 A20R24	0757-0420 0811-2813 0757-0316 0757-0397 0698-3447		RESISTOR; FXD; 750 OHM1% .125W F RESISTOR; FXD; 1 OHM5% .5W PPW.TUBULAR RESISTOR; FXD; 42.2 OHM1% .125W F RESISTOR; FXD; 68.1 OHM1% .125W F RESISTOR; FXD; 422 OHM1% .125W F	24546 91637 24546 24546 16299	C4-1/8-T0-751-F RS1/2-T2-1R0-J C4-1/8-T0-42R2-F C4-1/8-T0-68R1-F C4-1/8-T0-422R-F
A20R25 A20R26 A20R27 A20R27 A20TP1 A20TP2	0811-1666 0811-1666 0698-7246 0360-1514 0360-1514		RESISTOR; FXD; 1 OHM5% 2W PW TUBULAR RESISTOR; FXD; 1 OHM5% 2W PW TUBULAR RESISTOR; FXD; 2.61K2% .05W F TUBULAR TERMINAL, SLDR STUD TERMINAL, SLDR STUD	75042 75042 24546 28480 28480	BWH2-1R0-J BWH2-1R0-J C3-1/8-T0-2611-G 0360-1514 0360-1514
A 20TP3 A 20TP4 A 20TP5 A 20TP6 A 20TP7	0360-1514 0360-1514 0360-1514 0360-1514 0360-1514		TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD	28480 28480 28480 28480 28480 28480	0360-1514 0360-1514 0360-1514 0360-1514 0360-1514 0360-1514
A20TP8 A20TP9 A20TP10 A20U1 A20U2	0360-1514 0360-1514 0360-1514 1826-0010 1826-0010		TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD IC;LIN;VOLTAGE REGULATOR IC;LIN;VOLTAGE REGULATOR	28480 28480 28480 07263 07263	0360-1514 0360-1514 0360-1514 723HM 723HM
A20VR1 A20VR2 A20VR3 A20VR4 A20VR5	1902-0025 1902-3234 1902-0244 1902-3345 1902-3005	1 1 1 1	DIODE; ZENER; 10V VZ; .4W MAX PD DIODE; ZENER; 19.6V VZ; .4W MAX PD DIODE; ZENER; 30.1V VZ; .4W MAX PD DIODE; ZENER; 51.1V VZ; .4W MAX PD DIODE; ZENER; 2.43V VZ; .4W MAX PD	04713 04713 04713 04713 04713 04713	SZ 10939-182 SZ 10939-266 SZ11213-278 SZ 10939-386 SZ 10939-5
A20VR6 A20XF1 A A20XF1 B A20XF2 A A20XF2B	1902-0049 1251-2313 1251-2313 1251-2313 1251-2313 1251-2313		DIODE; ZENER; 6.19V VZ; .4W MAX PD CONNECTOR.1-CONT SKT .04 DIA CONNECTOR.1-CONT SKT .04 DIA CONNECTOR.1-CONT SKT .04 DIA CONNECTOR.1-CONT SKT .04 DIA	28480 24995 24995 24995 24995 24995	1902-0049 3-332070-5 3-332070-5 3-332070-5 3-332070-5 3-332070-5
A21			NOT ASSIGNED		
A22	08640-60006	1	+20V & -20V REGULATOR ASSY	28480	08640-60006
A22C1 A22C2	0180-0229 0160-3534		CAPACITOR-FXD, 33UF+-10% 10VDC TA-SOLID CAPACITOR;FXD; 510PF+-5% 100WVDC	56289 28480	150D336X901082 0160-3534
A22C3 A22C4 A22C5 A22C6 A22C7	0160-0158 0180-0058 0180-0229 0160-3534 0160-3534	2 2	CAPACITOR;FXD; .0056UF+-10% 200WVDC CAPACITOR-FXD; 50UF+75-10% 25VDC AL CAPACITOR-FXD; 33UF+-10% 10VDC TA-SOLID CAPACITOR;FXD; 510PF+-5% 100WVDC CAPACITOR;FXD; .0056UF+-10% 200WVDC	56289 56289 56289 28480 56289	292P56292 30D506G025CC2 150D336X901082 0160-3534 292P56292
A22C8 A22CR1 A22CR2 A22CR3 A22CR3	0180-0058 1901-0025 1901-0159 1901-0050 1901-0025		CAPACITOR-FXD; 50UF+75-10% 25VDC AL DIDDE; GEN PRP; SI; 100V MAX VRM 200MA DIDDE; PWR RECT; SI; 400V MAX VRM 750MA DIODE; SWITCHING; SI; 80V MAX VRM 200MA DIDDE; GEN PRP; SI; 100V MAX VRM 200MA	56289 28480 04713 28480 28480	30D506G025CC2 1901-0325 SR1358-4 1901-0050 1901-0025
A22CR5 A22CR6 A22DS1 A22DS2 A22F1	1901-0050 1901-0159 1990-0326 1990-0326 2110-0424	2	DIDDE; SWITCHING;SI ; 80V MAX VRM 200MA DIDDE; PWR RECT; SI ; 400V MAX VRM 750MA PHDTO-DEVICE, DIO VSBL LT EMTR 200MW PD PHOTO-DEVICE, DIO VSBL LT EMTR 200MW PD FUSE:MINIATURE BI-PIN 3/4A	28480 04713 28480 28480 71400	1901-0050 SR1358-4 1990-0326 1990-0326 GMW3/4A

.

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A22F2 A22MP1	2110-0424 4040-0748 1480-0073		FUSE:MINIATURE BI-PIN 3/4A Extractor:PC Board, Black PIN:DRIVE 0.250" LG	71400 28480 90000	GMW3/4A 4040-0748 OBD
A 22MP2	4040-0754 1480-0073	1	EXTRACTOR:PC BOARD, BLUE PIN:DRIVE 0.250" LG	28480 00000	40400754 OBD
A2201 A2202 † A2203 †	1884-0012 1854-0039 1200-0173 1854-0039 1200-0173		THYRISTOR, SCR, JEDEC 2N3528 TRANSISTOR NPN 2N3053 SI PD=1W INSULATOR, XSTR, TO- 5, 075 THK TRANSISTOR NPN 2N3053 SI PD=1W INSULATOR, XSTR, TO-5, .075 THK	02735 04713 28480 04713 28480	2N3528 2N3053 1200-0173 2N3053 1200-0173
A2204 A22R1 A22R2 A22R3	1884-0012 0698-0085 0757-0280 0698-3154		THYRISTOR, SCR, JEDEC 2N3528 RESISTOR; FXD; 2.61K1% .125W F TUBULAR RESISTOR; FXD; 1K1% .125W F TUBULAR RESISTOR; FXD; 4.22K1% .125W F TUBULAR	02735 16299 24546 16299	2N3528 C4-1/8-T0-2611-F C4-1/8-T0-1001-F C4-1/8-T0-4221-F
A22R4 A22R5 A22R6 A22R7 A22R8	0757-0401 0698-0084 0698-3154 2100-3123 0683-0275	2	RESISTOR; FXD; 100 DHM13 .125W F RESISTOR; FXD; 2.15K13 .125W F TUBULAR RESISTOR; FXD; 4.22K13 .125W F TUBULAR RESISTOR,VAR,TRMR 500 DHM 103 C RESISTOR; FXD; 2.7 OHM53 .25W CC	24546 16299 16299 32997 01121	C4-1/8-T0-101-F C4-1/8-T0-2151-F C4-1/8-T0-4221-F 3006P-1-501 C827G5
A22R9 A22R10 A22R11 A22R12 A22P13	0698-3439 0757-0397 0698-3447 0811-1668 0757-0278	2 2	RESISTOR; FXD; 178 OHM1X .125W F RESISTOR; FXD; 68.1 OHM1X .125W F RESISTOR; FXD; 422 OHM1X .125W F RESISTOR; FXD; 1.5 OHM5X 2W PW TUBULAR RESISTOR; FXD; 1.5 OHM5X .125W F TUBULAR	16299 24546 16299 75042 24546	C4-1/8-T0-178R-F C4-1/8-T0-68R1-F C4-1/8-T0-422R-F BHH2-1R5-J C4-1/8-T0-1781-F
A22R 14 A22R15 A22R16 A22R17 A22R17 A22P18	0698-0085 0757-0280 0698-3154 0757-0401 0757-0438		RESISTOR; FXD; 2.61K1% .125W F TUBULAR RESISTOR; FXD; 1K1% .125W F TUBULAR RESISTOR; FXD; 4.22K1% .125W F TUBULAR RESISTOR; FXD; 100 0HM1% .125W F RESISTOR; FXD; 5.11K1% .125W F TUBULAR	16299 24546 16299 24546 24546	C4~1/8~T0-2611-F C4~1/8~T0-1001-F C4~1/8~T0-4221-F C4~1/8~T0-101-F C4~1/8~T0-5111-F
A22R19 A22R20 A22R21 A22R22 A22R22 A22R23	2100-3123 0698-0084 0683-0275 0698-3439 0757-0397		RESISTOR,VAR,TRMR 500 DHM 103 C RESISTOR; FXD; 2.15K13 .125W F TUBULAR RESISTOR; FXD; 2.7 DHM53 .25W CC RESISTOR; FXD; 178 DHM13 .125W F RESISTOR; FXD; 68.1 DHM13 .125W F	32997 16299 01121 16299 24546	3006P-1-501 C4-1/8-T0-2151-F C827G5 C4-1/8-T0-178R-F C4-1/8-T0-68R1-F
A22R24 A22R25 A22R26 A22R26 A22R27 A22R27 A22TP1	0698-3447 0811-1668 0698-7260 0698-7260 0360-1514		RESISTOR; FXD; 422 OHMIX .125W F RESISTOR; FXD; 1.5 OHM5X 2W PW TUBULAR RESISTOR; FXD; 10K2X .05W F TUBULAR RESISTOR; FXD; 10K2X .05W F TUBULAR TERMINAL, SLDR STUD	16299 75042 24546 24546 28480	C4-1/8-T0-422R-F BWH2-1R5-J C3-1/8-T0-1002-G C3-1/8-T0-1002-G 0360-1514
A22TP2 A22TP3 A22TP4 A22TP5 A22TP6	0360-1514 0360-1514 0360-1514 0360-1514 0360-1514		TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD	28480 28480 28480 28480 28480 28480	0360-1514 0360-1514 0360-1514 0360-1514 0360-1514 0360-1514
A22TP7 A22TP8 A22TP9 A22TP9 A22TP10 A22U1	0360-1514 0360-1514 0360-1514 0360-1514 1826-0010		TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD IC;LIN;VOLTAGE REGULATOR	28480 28480 28480 28480 28480 07263	0360-1514 0360-1514 0360-1514 0360-1514 723HM
A22U2 A22VR1 A22VR2 A22VR3 A22VR3 A22VR4	1826-0010 1902-0202 1902-3256 1902-0761 1902-0202	2 2 1	IC:LIN:VOLTAGE REGULATOR DIODE; ZENER; 15V VZ; 1W MAX PD DIODE; ZENER; 23.7V VZ; .4W MAX PD DIODE; ZENER; 6.2V VZ; .25W MAX PD DIODE; ZENER; 15V VZ; 1W MAX PD	07263 04713 04713 04713 04713	723HM SZ11213-191 SZ 10939-290 1N821 SZ11213-191
A22VR5 A22XF1 A A22XF1 B A22XF2 A A22XF2 B	1902-3256 1251-2313 1251-2313 1251-2313 1251-2313 1251-2313		DIODE; ZENER; 23.7V VZ; .4W MAX PD CONNECTOR,1-CONT SKT .04 DIA CONNECTOR,1-CONT SKT .04 DIA CONNECTOR,1-CONT SKT .04 DIA CONNECTOR,1-CONT SKT .04 DIA	04713 24995 24995 24995 24995 24995	SZ 10939-290 3-332070-5 3-332070-5 3-332070-5 3-332070-5 3-332070-5
A23			NOT ASSIGNED		
A24	08640-60007	1	SERIES REGULATOR SOCKET ASSY	28480	08640-60007
A24MP1 A24MP2 A24XQ1 A24X02 A24X03 A24X04	0361-0009 0403-0152 1200-0041 1200-0041 1200-0041 1200-0041	3	RIVET:SEM TUBULAR 1/8 X 3/16" LG GUIDE, PC BOARD, 1 L, 25 W, LEXAN,BLACK SOCKET, ELEC, XSTR 2-CONT TO-3 PKG SLDR SOCKET, ELEC, XSTR 2-CONT TO-3 PKG SLDR SOCKET, ELEC, XSTR 2-CONT TO-3 PKG SLDR SOCKET, ELEC, XSTR 2-CONT TO-3 PKG SLDR	00000 28480 00014 00014 00014 00014	08D 0403-0152 PTS-1 PTS-1 PTS-1 PTS-1 PTS-1

(

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A25			NOT ASSIGNED		
A26	08640-60110	1	AM/AGC AND RF AMPLIFIER ASSY	28480	08640-60110
A26C1 A26C2 A26C3	0160-2049 0160-2049 0160-3219	3	CAPACITOR;FXD; .005UF+80-20% 500WVDC CAPACITOR;FXD; .005UF+80-20% 500WVDC CAPACITOR;FXD; 100PF+-20% 500WVDC	28480 28480 28480	0160-2049 0160-2049 0160-3219
A26C4 A26C5 A26C6 A26C7 A26C8	0160-3219 0160-2049 0160-2049 0160-2049 0160-2049 0160-2049		CAPACITOR;FXD; 100PF+-20% 500WVDC CAPACITOR;FXD; 005UF+80-20% 500WVDC CAPACITOR;FXD; 005UF+80-20% 500WVDC CAPACITOR;FXD; 005UF+80-20% 500WVDC CAPACITOR;FXD; 005UF+80-20% 500WVDC	28480 28480 28480 28480 28480 28480	0160-3219 0160-2049 0160-2049 0160-2049 0160-2049
A26C9 A26C10 A26C11 A26C12 A26C12 A26C13	0160-2049 0160-2049 0160-2049 0160-2049 0160-2049 0160-3961	1	CAPACITOR;FXD; .005UF+80-20% 500WVDC CAPACITOR;FXD; .005UF+80-20% 500WVDC CAPACITOR;FXD; .005UF+80-20% 500WVDC CAPACITOR;FXD; .005UF+80-22% 500WVDC CAPACITOR;FXD; .56PF+-20% 500WVDC	28480 28480 28480 28480 28480 28480	0160-2049 0160-2049 0160-2049 0160-2049 0160-2961
A26C14 A26C15 A26C16 A26C17 A26C18	0160-3219 0160-2049 0160-2049 0160-2152 0160-2152	2	CAPACITOR;FXD; 100PF+-203 500WVDC CAPACITOR;FXD; .005UF+80-203 500WVDC CAPACITOR;FXD; .005UF+80-203 500WVDC CAPACITOR;FXD; 10PF+-203 500WVDC CAPACITOR;FXD; 10PF+-203 500WVDC	28480 28480 28480 28480 28480 28480	0160-3219 0160-2049 0160-2049 0160-2152 0160-2152
A 26J1 A 26J2 A 26J3 A 26L1 A 26L2	1250-0829 1250-1423 1251-2613 9100-1620 9100-1621	1 1 11	CONNECTOR-COAX, SMC, 50 OHM MALE Cap:COAXIAL Connector,1-cont Skt .033 DIA Coil, FXD, Molded RF Choke, 15uh 10% Coil, FXD, Molded RF Choke, 18uh 10%	98291 28480 24995 24226 24226	50-045-4610 1250-1423 50864-3 15/152 15/182
A26L3 A26L4 A26L5 A26L6 A26L7	9100-1620 9100-1620 9100-1620 9100-1620 9100-1620 9140-0178	1	COIL, FXD, MOLDED RF CHOKE, 15UH 103 COIL, FXD, MOLDED RF CHOKE, 15UH 103	24226 24226 24226 24226 24226 24226	15/152 15/152 15/152 15/152 15/152 15/122
A26L8 A26MP1 A26MP2 A26MP3 A26MP4	9100-1620 8160-0218 8160-0222 8160-0223 8160-0224	1 1 1	COIL, FXD, MOLDED RF CHOKE, 15UH 103 GASKET MATL;RFI; FL STRP/SH NICKEL GASKET MATL;RFI; FL STRP/SH NICKEL GASKET MATL;RFI; FL STRP/SH NICKEL GASKET:MOD BOTTOM COVER	24226 28480 28480 28480 28480 28480	15/152 8160-0218 8160-0222 8160-0223 8160-0223
A 26MP5 A26MP6 A26MP7 A26MP8 A26MP9	08640-00012 08640-00018 08640-20076 08640-20077 08640-20081	1 1 1 1	COVER:ACCESS Cover:Filter Module Cover:Top Module Casting:Module Cover:Bottom Module	28480 28489 28480 28480 28480 28480	08640-00012 08640-00018 08640-20076 08640-20077 08640-20081
A26MP10 A26MP11 A26MP12 A26MP13 A26MP14	08640-00013 0403-0153 0403-0156 0403-0157 2200-0107	1 1	COVER:FILTER AMPLIFIER GUIDE, PC BOARD, 1 L .25 W LEXAN,BROWN GUIDE, PC BOARD, 1 L .25 W LEXAN,YELLOW GUIDE, PC BOARD, 1 L .25 W LEXAN,GREEN SCREW;MACHINE; 4-40 UNC-2A .375 IN PAN	28480 28480 28480 28480 28480 28480	08640-00013 0403-0153 0403-0156 0403-0157 2200-0107
A26MP15 A26MP16 A26MP17 A26MP18 A26MP19	0520-0127 2360-0201 2950-0078 2190-0124 2190-0012	1	SCREW;MACHINE; 2-56 UNC-2A .188 IN PAN SCREW;MACHINE; 6-32 UNC-2A .5 IN PAN NUT, HEX 10-32 .067 X .25, BRS, AU PL WASHER; LOCK; INT; 10 .195 ID .311 DD WASHER; LOCK; EXT; 10 .195 ID .406 OD	28480 28480 24931 24931 78189	0520-0127 2360-0201 HN100-11 LW101-30 1810-00
A26MP20 A26MP21 A26MP22 A26MP23 A26MP23 A26MP24	2190-0014 2190-0018 3050-0228 2950-0035 2190-0068	1 1 1	WASHER; LOCK; INT; 2 .089 ID .185 OD WASHER; LOCK; HELICAL; 6 .141 ID .269 WASHER; FLAT .156 ID .312 OD NUT, HEX 1572-32 .078 X .562, BRS, NI WASHER; LOCK; INT .505 ID .63 OD	78189 28480 80120 73076 78189	1902-00 2190-0018 MS15795-305 1924-02
A 26MP2 5 A 26R 1 A 26U 1 A 26U 2	0361-1071 0757-0159 5086-7068 08640-00002 5086-7079 08640-00002	1 1 2 1	RIVET,BLIND, DOME HD 0.125" DIA RESISTOR: FXD; 1K1% .5W F TUBULAR OUTPUT AMPLIFIER HEAT SINK:TRANSISTOR MODULATOR PREAMPLIFIER HEAT SINK:TRANSISTOR	11815 30983 28480 28480 28480 28480 28480	AAP-4-3 MF7C1/2-TD-1RO-F 5086-7068 08640-00002 5086-7079 08640-00002
A26W1 A26W2 A26W3 A26W 4	8120-1889 8120-1887 8120-1905 8120-1892	1 1 1 1	CABLE ASSY(19562) CABLE ASSY(09285) CABLE ASSY(2.953) CABLE:COAX ASSY(3.479)	28480 28480 28480 94142	8120-1905
A26A1 A26A1	08640-60017 08640-60088	1	POWER AMPLIFIER & AGC DETECTOR ASSY Rebuilt 08640-60017, Requires Exchange	28480 28480	

See introduction to this section for ordering information

:

ł

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A26A1C1 A26A1C2	0160-3094		CAPACITOR;FXD; .1UF+-10% 100WVDC Not Assigned	28480	0160-3094
A26A1C2 A26A1C3 A26A1C4	0160-3094 0160-3094		CAPACITOR;FXD; .UF+-10% 100WVDC CAPACITOR;FXD; .UF+-10% 100WVDC	28480 28480	0160-3094 0160-3094
A26A1C5 A26A1C6 A26A1C7 A26A1C71 A26A1CR1 A26A1CR2	0180-0197 0140-0198 0160-2204 1910-0022 1901-0040	1 8	CAPACITOR-FXD, 2.2UF+-10% 20VDC TA CAPACITOR;FXD; 200PF+-5% 300WVDC CAPACITOR;FXD; 100PF+-5% 300WVDC DIODE; SWITCHING;6E ; 5V MAX VRM 60MA DIODE; SWITCHING;51 ; 30V MAX VRM 50MA	56289 72136 28480 28480 28480 28480	150D225X9020A2 DM15F201J0300WV1CR 0160-2204 1910-0022 1901-0040
A26A1CR3 A26A1CR4	1901-0539 1901-0040	2	DIODE; SCHOTTKY; HOT CARRIER DIODE; SWITCHING;SI ; 30V MAX VRM 50MA	28480 28480	1901-0539 1901-0040
A26A1L1	9100-1620		COIL, FXD, MOLDED RF CHOKE, 15UH 10%	24226	15/152
A 26A 1L 2	9140-0180	1	COIL, FXD, MOLDED RF CHOKE, 2.7UH 10%	24226	15/271
A26A1MP1 A26A1MP2	0340-0044 0340-0044	2	TERMINAL, SLDR STUD, .148 SHK DIA TERMINAL, SLDR STUD, .148 SHK DIA	83330 83330	92-1500 92-1500
A26A101 A26A102 A26A103 A26A104 A26A104 A26A105	1853-0015 1854-0071 1854-0071 1854-0071 1855-0049	1	TRANSISTOR PNP SI PD=200MW FT=500MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR, JFET,DUAL, N-CHAN D-MODE SI	28480 28480 28480 28480 28480 28480	1853-0015 1854-0071 1854-0071 1854-0071 1855-0049
A26A1Q6 A26A1R1 A26A1R2 A26A1R3 A26A1R3 A26A1R4	1853-0007 0757-0441 0698-3443 0698-3160 0698-3446	2 1	TRANSISTOR PNP 2N3251 SI PD=360MW RESISTOR; FXD; 8.25K1% .125W F TUBULAR RESISTOR; FXD; 287 0HM1% .125W F RESISTOR; FXD; 31.6K1% .125W F TUBULAR RESISTOR; FXD; 383 0HM1% .125W F	04713 24546 16299 16299 16299	2N3251 C4-1/8-T0-8251-F C4-1/8-T0-287R-F C4-1/8-T0-3162-F C4-1/8-T0-383R-F
A26A1R5 A26A1R6 A26A1R7 A26A1R8 A26A1R8	0698-3445 0757-0280 0683-1055 0698-3450 0757-0438	1	RESISTOR; FXD; 348 OHM1X .125W F RESISTOR; FXD; 1K1X .125W F TUBULAR RESISTOR; FXD; 1M5X .25W CC TUBULAR RESISTOR; FXD; 42.2K1X .125W F TUBULAR RESISTOR; FXD; 5.11K1X .125W F TUBULAR	16299 24546 01121 16299 24546	C4-1/8-T0-348R-F C4-1/8-T0-1001-F C81055 C4-1/8-T0-4222-F C4-1/8-T0-5111-F
A26A1R10 A26A1R11 A26A1R12 A26A1R13 A26A1R13 A26A1R14	0757-0442 2100-2061 0757-0401 0757-0401 0698-3450	1	RESISTOR; FXD; 10K1% .125W F TUBULAR RESISTOR, VAR, TRMR, 200 OHM 10% C RESISTOR; FXD; 100 OHM1% .125W F RESISTOR; FXD; 100 OHM1% .125W F RESISTOR; FXD; 42.2K1% .125W F TUBULAR	24546 28480 24546 24546 16299	C4-1/8-T0-1002-F 2100-2061 C4-1/8-T0-101-F C4-1/8-T0-101-F C4-1/8-T0-4222-F
A26A1R15 A26A1R16 A26A1R16 A26A1R17 A26A1TP1 A26A1VR1	0757-0280 0698-3438 0698-3132 0360-1514 1902-0184	1	RESISTOR; FXD; 1K1% .125W F TUBULAR RESISTOR; FXD; 147 OHM1% .125W F RESISTOR; FXD; 261 OHM1% .125W F TERMINAL, SLDR STUD DIODE; ZENER; 16.2V VZ; .4W MAX PD	24546 16299 16299 28480 28480	C4-1/8-T0-1001-F C4-1/8-T0-147R-F C4-1/8-T0-2610-F 0360-1514 1902-0184
A26A1VR2 A26A1XU1A -E	1902-0048 1251-2613	1	DIODE; ZENER; 6.81V VZ; .4W MAX PD Connector,1-cont skt .033 DIA	28480 24995	1902-0048 50864-3
A26A2	08640-60014	1	AM OFFSET & PULSE SWITCHING ASSY	28480	08640-60014
A26A2C1 A26A2C2 A26A2C3	0180-0291 0180-0291 0180-0291		CAPACITOR-FXD, 1UF+-10% 35VDC TA-SOLID CAPACITOR-FXD, 1UF+-10% 35VDC TA-SOLID CAPACITOR-FXD, 1UF+-10% 35VDC TA-SOLID	56289 56289 56289	150D105X9035A2 150D105X9035A2 150D105X9035A2
A26A2C4 A26A2C5 A26A2C6 A26A2C7 A26A2C7	0180-0291 0160-3450 0160-0161 0160-3450 0180-1743	2 2	CAPACITOR-FXD, 1UF+-10% 35VDC TA-SOLID CAPACITOR,FXD, 005UF+-10% 250WVDC CAPACITOR;FXD; 01UF+-10% 200WVDC CAPACITOR;FXD, 005UF+-10% 250WVDC CAPACITOR-FXD, 1UF+-10% 35VDC TA-SOLID	56289 28480 56289 28480 56289	150D105X9035A2 0160-3450 292P10392 0160-3450 150D104X9035A2
A26A2C9 A26A2C10 A26A2C11 A26A2C11 A26A2C12 A26A2CR1	0180-0100 0180-0116 0180-0291 1910-0022		NOT ASSIGNED Capacitor-FXD, 4.7UF+-10% 35VDC TA Capacitor-FXD, 6.8UF+-10% 35VDC TA Capacitor-FXD, 1UF+-10% 35VDC TA-Solid Didde; Switching;ge; 5V Max VRM 60MA	56289 56289 56289 28480	150D475X9035B2 150D685X9035B2 150D105X9035A2 1910-0022
A26A2CR2 A26A2CR3 A26A2CR4 A26A2CR5 A26A2CR5 A26A2CR6 A26A2CR7 A26A2CR7 A26A2CR7 A26A2CR7	1901-0022 1901-0022 1901-0022 1901-0040 1901-0040 1901-0040	7	DIODE; STABISTOR; SI ; 10V MAX VRM 250MA DIODE; STABISTOR; SI ; 10V MAX VRM 250MA DIODE; STABISTOR; SI ; 10V MAX VRM 250MA DIODE; SWITCHING; SI ; 30V MAX VRM 50MA DIODE; SWITCHING; SI ; 30V MAX VRM 50MA DIODE; SWITCHING; SI ; 30V MAX VRM 50MA NOT ASSIGNED	28480 28480 28480 28480 28480 28480 28480	1901-0022 1901-0022 1901-0022 1901-0040 1901-0040 1901-0040
A26A2CR9 A26A2CR10 A26A2CR11 A26A2CR12	1910-0022 1901-0040 1901-0040 1901-0040		DIODE; SWITCHING;GE ; 5V MAX VRM 60MA DIODE; SWITCHING;SI ; 30V MAX VRM 50MA DIODE; SWITCHING;SI ; 30V MAX VRM 50MA DIODE; SWITCHING;SI ; 30V MAX VRM 50MA	28480 28480 28480 28480 28480	1910-0022 1901-0040 1901-0040 1901-0040

all of

ſ

Table 6-3	Replaceable	Parts
-----------	-------------	-------

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A26A2CR13 A26A2CR14 A26A2CR15 A26A2CR16 A26A2CR16 A26A2CR17	1910-0022 1910-0022 1910-0022 1910-0022 1910-0022 1901-0040		DIODE; SWITCHING;GE; 5V MAX VRM 60MA DIODE; SWITCHING;SI; 30V MAX VRM 50MA	28480 28480 28480 28480 28480 28480	1910-0022 1910-0022 1910-0022 1910-0022 1910-0022 1901-0040
A26A2CR18 A26A2K1 A26A2L1 A26A2L2 A26A2L2 A26A2L3	1910-0022 0490-1080 9100-1641 9100-1641 9100-1620	4	DIDDE; SWITCHING;GE ; 5V MAX VRM 60MA RELAY, REED, 1C .25A 150V CONT, 5V COIL COIL; FXD; MOLDED RF CHOKE; 240UH 5% COIL; FXD; MOLDED RF CHOKE; 240UH 5% COIL, FXD, MOLDED RF CHOKE, 15UH 10%	28480 32255 24226 24226 24226 24226	1910-0022 SX30-014 15/243 15/243 15/152
A26A2MP1 A26A2MP2 A26A2Q1	4040-0749 1480-0073 4040-0752 1480-0073 1854-0221		EXTRACTOR:PC BOARD, BROWN PIN:DRIVE 0.250" LG Extractor:PC Board, Yellow PIN:DRIVE 0.250" LG Transistor, Bipol, SI, NPN DUAL	28480 00009 28480 09009 28489	4040-0749 OBD 4040-0752 OBD 1854-0221
A26A2Q2 A26A2Q3 A26A2Q3 A26A2Q4 A26A2Q5 A26A2Q5	1854-0404 1853-0034 1853-0034 1854-0404 1854-0404		TRANSISTOR NPN SI PD=360MW FT=200MHZ TRANSISTOR PNP SI PD=360MW FT=400MHZ TRANSISTOR PNP SI PD=360MW FT=400MHZ TRANSISTOR NPN SI PD=360MW FT=200MHZ TRANSISTOR NPN SI PD=360MW FT=200MHZ	28480 28480 28480 28480 28480 28480	1854-0404 1853-0034 1853-0034 1854-0404 1854-0404
A26A2Q7 + A26A2Q8 + A26A2Q9 + A26A2Q9 + A26A2R1 A26A2R1	1854-0404 1853-0034 1853-0034 0757-0465 0757-0440	6	TRANSISTOR NPN SI PD=360MW FT=200MHZ TRANSISTOR PNP SI PD=360MW FT=400MHZ TRANSISTOR PNP SI PD=360MW FT=400MHZ RESISTOR; FXD; 100KHX ±125W F TUBULAR RESISTOR; FXD; 7.5K1X ±125W F TUBULAR	28480 26480 28480 24546 24546 24546	1854-0404 1853-0934 1853-0934 C4-1/8-T0-1003-F C4-1/8-T0-7501-F
A26A2R3 A26A2R4 A26A2R5 A26A2R6 A26A2R6	0757-0442 0757-0442 0698-3155 0757-0442 0757-0440		RESISTOR; FXD; 10K1X .125W F TUBULAR RESISTOR; FXD; 10K1X .125W F TUBULAR RESISTOR; FXD; 4.64K1X .125W F TUBULAR RESISTOR; FXD; 10K1X .125W F TUBULAR RESISTOR; FXD; 7.5K1X .125W F TUBULAR	24546 24546 16299 24546 24546	C4-1/8-T0-1002-F C4-1/8-T0-1002-F C4-1/8-T0-4641-F C4-1/8-T0-4641-F C4-1/8-T0-1002-F C4-1/8-T0-7501-F
A26A2R8 A26A2R9 A26A2R10 A26A2R11 A26A2R12	0757-0422 0757-0421 0757-0439 0757-0442 0757-0442	1 3	RESISTOR; FXD; 909 OHM1% .125W F RESISTOR; FXD; 825 OHM1% .125W F RESISTOR; FXD; 6.81K1% .125W F TUBULAR RESISTOR; FXD; 10K1% .125W F TUBULAR RESISTOR; FXD; 10K1% .125W F TUBULAR	24546 24546 24546 24546 24546 24546	C4-1/8-T0-909R-F C4-1/8-T0-825R-F C4-1/8-T0-6811-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F
A26A2R13 A26A2R14 A26A2R15 A26A2R16 A26A2R16 A26A2R17	0757-0401 0757-0421 0757-0438 0757-0280 0698-3440		RESISTOR; FXD; 100 0HM1% .125W F RESISTOR; FXD; 825 0HM1% .125W F RESISTOR; FXD; 5.11K1% .125W F TUBULAR RESISTOR; FXD; 1K1% .125W F TUBULAR RESISTOR; FXD; 196 0HM1% .125W F	24546 24546 24546 24546 24546 16299	C4-1/8-T0-101-F C4-1/8-T0-825R-F C4-1/8-T0-5111-F C4-1/8-T0-1001-F C4-1/8-T0-196R-F
A26A2R18 A26A2R19 A26A2R20 A26A2R21 A26A2R21 A26A2R22	0757-0438 2100-2413 0698-3157 0757-0416 0757-0394	1	RESISTOR; FXD; 5.11K1X .125W F TUBULAR RESISTOR, VAR, TRMR, 200 OHM 10X C RESISTOR; FXD; 19.6K1X .125W F TUBULAR RESISTOR; FXD; 511 OHM1X .125W F RESISTOR; FXD; 51.1 OHM1X .125W F	24546 19701 16299 24546 24546	C4-1/8-TO-5111-F ET50X201 C4-1/8-TO-1962-F C4-1/8-TO-511R-F C4-1/8-TO-51R1-F
A26A2R23 A26A2R24 A26A2R25 A26A2R26 A26A2R26 A26A2R27	0698-3162 0757-0438 0698-3162 0757-0438 0698-0085		RESISTOR; FXD; 46.4K1I .125W F TUBULAR RESISTOR; FXD; 5.11K1I .125W F TUBULAR RESISTOR; FXD; 46.4K1I .125W F TUBULAR RESISTOR; FXD; 5.11K1I .125W F TUBULAR RESISTOR; FXD; 2.61K1I .125W F TUBULAR	16299 24546 16299 24546 16299	C4-1/8-T0-4642-F C4-1/8-T0-5111-F C4-1/8-T0-4642-F C4-1/8-T0-5111-F C4-1/8-T0-5111-F
A26A2R28 A26A2R29 A26A2R30 A26A2R31 A26A2R31	0698-3162 0698-3150 0757-0438 0698-3154 0757-0438		RESISTOR; FXD; 46.4K1X .125W F TUBULAR RESISTOR; FXD; 2.37K1X .125W F TUBULAR RESISTOR; FXD; 5.11K1X .125W F TUBULAR RESISTOR; FXD; 4.22K1X .125W F TUBULAR RESISTOR; FXD; 5.11K1X .125W F TUBULAR	16299 16299 24546 16299 24546	C4-1/8-T0-2371-F C4-1/8-T0-5111-F C4-1/8-T0-4221-F
A26A2R33 A26A2R34 A26A2R35 A26A2R36 A26A2R36	0698-3450 0757-0289 0698-0082 0698-0083 0757-0442		RESISTOR; FXD; 42.2K1% .125W F TUBULAR RESISTOR; FXD; 13.3K1% .125W F TUBULAR RESISTOR; FXD; 464 DHM1% .125W F RESISTOR; FXD; 1.96K1% .125W F TUBULAR RESISTOR; FXD; 10K1% .125W F TUBULAR	16299 30983 16299 16299 24546	MF4C1/8-T0-1332-F C4-1/8-T0-4640-F C4-1/8-T0-1961-F
A26A2R38 A26A2R39 A26A2TP1 A26A2TP2 A26A2TP2 A26A2TP3	0757-0438 0698-0083 0360-1514 0360-1514 0360-1514		RESISTOR; FXD; 5.11K13 .125W F TUBULAR RESISTOR; FXD; 1.96K13 .125W F TUBULAR TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD	24546 16299 28480 28480 28480 28480	C4-1/8-T0-1961-F 0360-1514 0360-1514
A26A2TP4 A26A2TP5 A26A2TP5 A26A2TP7 A26A2TP7 A26A2TP8	0360-1514 0360-1514 0360-1514 0360-1514 0360-1514		TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD	28480 28480 28480 28480 28480 28480	0360-1514 0360-1514 0360-1514
A26A2U1 A26A2U2 A26A2U3 A26A2U3 A26A2VR1	1826-0114 1820-0448 1820-0579 1902-3139	1 1 1 1	IC;DGTL;COMPARATOR (ANALOG) IC:DGTL;GATE IC:DGTL;MULTIVIBRATOR DIODE; ZENER; 8.25V VZ; .4W MAX PD	07263 01295 01295 01295 04713	SN5400N SN74123N

3

}

,

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A26A3	08640-60016	1	MODULATOR ASSY	28 4 80	08640-60016
A26A3C1	0160-3094		CAPACITOR;FXD; .1UF+-10% 100WVDC	28480	0160-3094
A26A3C2 A26A3C3 A26A3C4 A26A3C5 A26A3C5	0160-3094 0150-0048 0150-0048 0150-0048 0150-0048 0150-0048	4	CAPACITOR;FXD; .1UF+-103 100HVDC CAPACITOR;FXD; .22PF+-53 500HVDC CAPACITOR;FXD; .22PF+-53 500HVDC CAPACITOR;FXD; .22PF+-53 500HVDC CAPACITOR;FXD; .22PF+-53 500HVDC	28480 95121 95121 95121 95121 95121	0160-3094 Type QC Type QC Type QC Type QC Type QC
A26A3CR1 A26A3CR2 A26A3CR3 A26A3CR3 A26A3CR4 A26A3CR5	08640-60163	1	MATCHED DIODE SET(INCL A26A3CR2-8,NSR) PART OF A26A3CR1-NSR PART OF A26A3CR1-NSR PART OF A26A3CR1-NSR PART OF A26A3CR1-NSR	28480	08640-60163
A26A3CR6 A26A3CR7 A26A3CR8 A26A3J1 A26A3J2	1250-1425 1251-2194	1	PART OF A26A3CR1.NSR PART OF A26A3CR1.NSR PART OF A26A3CR1.NSR CONNECTOR-COAX, SMC, 50 OHM MALE CONNECTOR.1-CONT SKT .021 DIA	28480 24995	1250-1425 3-331272-0
A26A3L1 A26A3L2 A26A3R1 A26A3R2 A26A3R3	9100-1620 9140-0112 0698-7229 0698-3132 0698-3132	1	COIL, FXD, MOLDED RF CHOKE, 15UH 10% COIL, FXD, MOLDED RF CHOKE, 4.7UH 10% RESISTOR; FXD; 511 OHM2% .05W F TUBULAR RESISTOR; FXD; 261 OHM1% .125W F RESISTOR; FXD; 261 OHM1% .125W F	24226 24226 24546 16299 16299	15/152 15/471 C3-1/8-T0-511R-G C4-1/8-T0-2610-F C4-1/8-T0-2610-F
A26A3R4 A26A3R5 A26A3T1 A26A3T2 A26A3T2 A26A3XU2A-E	0757-0416 0757-0416 08640-80003 08640-80003 1251-2613	2	RESISTOR; FXD; 511 DHM1% .125W F RESISTOR; FXD; 511 OHM1% .125W F BALUN ASSY BALUN ASSY CONNECTOR,1-CONT SKT .033 DIA	24546 24546 28480 28480 24995	C4-1/8-T0-511R-F C4-1/8-T0-511R-F 08640-80003 08640-80003 50864-3
A26A4 A26A4	08640-60015 08640-60086	1	AGC AMPLIFIER ASSY Rebuilt 08640-60015, Requires exchange	28480 28480	08640-60015 08640-60086
A26A4C1 A26A4C2 A26A4C3 A26A4C4	0180-0291 0180-0291 0180-0291 0160-2307		CAPACITOR-FXD, 1UF+-103 35VDC TA-SOLID CAPACITOR-FXD, 1UF+-103 35VDC TA-SOLID CAPACITOR-FXD, 1UF+-103 35VDC TA-SOLID CAPACITOR;FXD; 47PF+-53 300WVDC	56289 56289 56289 28480	1500105X9035A2 1500105X9035A2 1500105X9035A2 0160-2307
A26A4C5 A26A4C6 A26A4C7 A26A4C8 A26A4C9	0160-2307 0160-3458 0180-0291 0180-0197 0160-0161	1	CAPACITOR;FXD; 47PF+-5% 300WVDC CAPACITOR,FXD, .005UF+-10% 250WVDC CAPACITOR-FXD, 1UF+-10% 35VDC TA-SOLID CAPACITOR-FXD, 2.2UF+-10% 20VDC TA CAPACITOR;FXD; .01UF+-10% 200WVDC	28480 28480 56289 56289 56289 56289	0160-2307 0160-3458 1500105x9035A2 1500225x9020A2 292P10392
A26A4C10 A26A4C11 A26A4C12 A26A4C12 A26A4C13 A26A4C14	0160-0302 0160-0159 0140-0191 0180-0291 0160-0576	1 1 1	CAPACITOR;FXD; .018UF+-103 200WVDC CAPACITOR;FXD; .0068UF+-103 200WVDC CAPACITOR;FXD; 56PF+-53 300WVDC CAPACITOR=FXD; 1UF+-103 35V0C TA-SOLID CAPACITOR;FXD; .1UF+-203 50WVDC	56289 56289 72136 56289 28480	292P18392 292P68292 DM15556J03000WV1CR 150D105X9035A2 0160-0576
A26A4C15 A26A4C16 A26A4C17 A26A4CR1 A26A4CR1 A26A4CR2	0160-0297 0160-3534 0160-3459 1901-0040 1901-0040	1	CAPACITOR;FXD; .0012UF+-10% 200WVDC CAPACITOR;FXD; 510PF→5% 100WVDC CAPACITOR;FXD, .02UF+-20% 100WVDC DIODE; SWITCHING;SI 30V MAX VRM 50MA DIODE; SWITCHING;SI 30V MAX VRM 50MA	56289 28480 28480 28480 28480 28480	292P12292 0160-3534 0160-3459 1901-0040 1901-0040
A26A4CR3 A26A4CR4 A26A4CR5 A26A4CR5 A26A4CR6 A26A4CR7	1901-0040 1901-0040 1901-0022 1901-0022 1910-0016	3	DIODE; SWITCHING;SI 30V MAX VRM 50MA DIODE; SWITCHING;SI 30V MAX VRM 50MA DIODE; STABISTOR;SI 10V MAX VRM 250MA DIODE; STABISTOR;SI 10V MAX VRM 250MA DIODE; SWITCHING;GE 60V MAX VRM 60MA	28480 28480 28480 28480 28480 28480	1901-0040 1901-0040 1901-0022 1901-0022 1910-0016
A26A4CR8 A26A4CR9 A26A4CP10 A26A4CR11 A26A4CR11	1910-0016 1910-0016 1901-0022 1901-0040 1901-0022		DIODE; SWITCHING;GE 60V MAX VRM 60MA DIODE; SWITCHING;GE 60V MAX VRM 60MA DIODE; STABISTOR;SI 10V MAX VRM 250MA DIODE; SWITCHING;SI 30V MAX VRM 50MA DIODE; STABISTOR;SI 10V MAX VRM 250MA	28480 28480 28480 28480 28480 28480	1910-0016 1910-0016 1901-0022 1901-0040 1901-0022
A26A4CR13 A26A4CR14 A26A4CR15 A26A4K1 A26A4K1 A26A4L1	1901-0539 1901-0518 1901-0040 0490-1080 9100-1641	1	DIDDE; SCHOTTKY HOT CARRIER DIDDE; SCHOTTKY HOT CARRIER DIDDE; SWITCHING; SI 30V MAX VRM 50MA RELAY, REED, 1C .25A 150V CONT, 5V COIL CGIL; FXD; MOLDED RF CHOKE; 240UH 5%	28480 28480 28480 32255 24226	1901-0539 1901-0518 1901-0040 \$X30-014 15/243
A26A4L2	9100-1641		COIL; FXD; MOLDED RF CHOKE; 240UH 5%	24226	15/243
A26A4MP1	4040-0749 1480-0073		EXTRACTOR:PC BOARD, BROWN PIN:DRIVE 0.250" LG	28480 00000	4040-0749 OBD

Í

Table	6-3.	Replaceable	Parts
-------	------	-------------	-------

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
A26A4MP2	4040-0753 1480-0073		EXTRACTOR:PC BOARD, GREEN PIN:DRIVE 0.250" LG	28480 00000	4040-0753 OBD
A2644Q1 A2644Q2	1854-0221 1854-0071		TRANSISTOR, BIPOL, SI, NPN DUAL TRANSISTOR NPN SI PD=300MW FT=200MHZ	28480 28480	1854-0221 1854-0071
A26A4Q3 A26A4Q4 A26A4Q5 A26A4Q6 A26A4Q6 A26A4Q7	1853-0007 1854-0221 1853-0034 1854-0071 1853-0034		TRANSISTOR PNP 2N3251 SI PD=360MW TRANSISTOR, BIPOL, SI, NPN DUAL TRANSISTOR PNP SI PD=360MW FT=400MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR PNP SI PD=360MW FT=400MHZ	04713 28480 28480 28480 28480 28480	2N3251 1854-0221 1853-0034 1854-0071 1853-0034
A26A408 A26A4Q9 A26A4R1 A26A4R2 A26A4R3	1854-0071 1854-0071 2100-2521 2100-2521 0757-0401		TRANSISTOR NPN SI PD=300MW FT=200MHZ TRANSISTOR NPN SI PD=300MW FT=200MHZ RESISTOR, VAR, TRMR, 2K0HM 10% C RESISTOR, VAR, TRMR, 2K0HM 10% C RESISTOR; FXD; 100 DHM1% .125W F	28480 28480 19701 19701 24546	1854-0071 1854-0071 ET50X202 ET50X202 C4-1/8-T0-101-F
A26A4R4 A26A4R5 A26A4R6 A26A4R7 A26A4R8	0757-0290 0757-0280 0757-0440 0698-3154 0757-0440		RESISTOR; FXD; 6-19K1% .125W F TUBULAR RESISTOR; FXD; 1K1% .125W F TUBULAR RESISTOR; FXD; 7-5K1% .125W F TUBULAR RESISTOR; FXD; 4-22K1% .125W F TUBULAR RESISTOR; FXD; 7-5K1% .125W F TUBULAR	30983 24546 24546 16299 24546	MF4C1/8-T0-6191-F C4-1/8-T0-1001-F C4-1/8-T0-7501-F C4-1/8-T0-4221-F C4-1/8-T0-7501-F
A26A4R9 A26A4R10 A26A4R11 A26A4R12 A26A4R13	0757-0465 0757-0442 0757-0442 2100-2514 0698-3156		RESISTOR; FXD; 100K1% .125W F TUBULAR RESISTOR; FXD; 10K1% .125W F TUBULAR RESISTOR; FXD; 10K1% .125W F TUBULAR RESISTOR, VAR, TRMR, 20KCHH 10% C RESISTOR; FXD; 14.7K1% .125W F TUBULAR	24546 24546 24546 19701 16299	C4-1/8-T0-1003-F C4-1/8-T0-1002-F C4-1/8-T0-1002-F ET50X203 C4-1/8-T0-1472-F
A26A4R14 A26A4R15 A26A4R16 A26A4R16 A26A4R17 A26A4R18	0757-0442 0698-3156 0757-0438 0698-3453 0698-3153		RESISTOR; FXD; 10K1% .125W F TUBULAR RESISTOR; FXD; 14.7K1% .125W F TUBULAR RESISTOR; FXD; 5.11K1% .125W F TUBULAR RESISTOR; FXD; 196K1% .125W F TUBULAR RESISTOR; FXD; 3.83K1% .125W F TUBULAR	24546 16299 24546 16299 16299	C4-1/8-T0-1002-F C4-1/8-T0-1472-F C4-1/8-T0-5111-F C4-1/8-T0-1963-F C4-1/8-T0-3831-F
A26A4R19 A26A4R20 A26A4R21 A26A4R22 A26A4R22	0757-0464 0757-0438 0757-0438 0757-0278 0757-0278	1	RESISTOR; FXD; 90.9K1% .125W F TUBULAR RESISTOR; FXD; 5.11K1% .125W F TUBULAR RESISTOR; FXD; 5.11K1% .125W F TUBULAR RESISTOR; FXD; 1.78K1% .125W F TUBULAR RESISTOR; FXD; 6.19K1% .125W F TUBULAR	24546 24546 24546 24546 30983	C4-1/8-T0-9092-F C4-1/8-T0-5111-F C4-1/8-T0-5111-F C4-1/8-T0-1781-F MF4C1/8-T0-6191-F
A26A4R24 A26A4R25 A26A4R26 A26A4R27 A26A4R27 A26A4R28	0698-0083 0757-0458 0757-0438 0757-0458 0757-0438		RESISTOR; FXD; 1.96K1X .125W F TUBULAR RESISTOR; FXD; 51.1K1X .125W F TUBULAR RESISTOR; FXD; 5.11K1X .125W F TUBULAR RESISTOR; FXD; 51.1K1X .125W F TUBULAR RESISTOR; FXD; 5.11K1X .125W F TUBULAR	16299 24546 24546 24546 24546 24546	C4-1/8-TO-1961-F C4-1/8-TO-5112-F C4-1/8-TO-5111-F C4-1/8-TO-5112-F C4-1/8-TO-5111-F C4-1/8-TO-5111-F
A26A4R29 A26A4R30 A26A4R31 A26A4R32 A26A4R33	0757-0442 0757-0441 0757-0317 0757-0442 0757-0438		RESISTOR; FXD; 10K1 % .125W F TUBULAR RESISTOR; FXD; 8.25K1 % .125W F TUBULAR RESISTOR; FXD; 1.33K1 % .125W F TUBULAR RESISTOR; FXD; 10K1 % .125W F TUBULAR RESISTOR; FXD; 5.11K1 % .125W F TUBULAR	24546 24546 24546 24546 24546 24546	C4-1/8-T0-1002-F C4-1/8-T0-8251-F C4-1/8-T0-1331-F C4-1/8-T0-1002-F C4-1/8-T0-5111-F
A26A4R34 A26A4R35 A26A4R36 A26A4R37 A26A4R37 A26A4R38	0757-0465 0757-0465 0698-0083 0757-0394 0698-3153		RESISTOR; FXD; 100K1X .125W F TUBULAR RESISTOR; FXD; 100K1X .125W F TUBULAR RESISTOR; FXD; 1.96K1X .125W F TUBULAR RESISTOR; FXD; 51.1 OHM1X .125W F RESISTOR; FXD; 3.83K1X .125W F TUBULAR	24546 24546 16299 24546 16299	C4-1/8-T0-1003-F C4-1/8-T0-1003-F C4-1/8-T0-1961-F C4-1/8-T0-1961-F C4-1/8-T0-51R1-F C4-1/8-T0-3831-F
A26A4R39 A26A4R40 A26A4R41 A26A4R41 A26A4R42 A26A4R43	0757-0280 0698-3437 0757-0465 0757-0465 0698-0083		RESISTOR; FXD; 1K1% .125W F TUBULAR RESISTOR; FXD; 133 OHM1% .125W F RESISTOR; FXD; 100K1% .125W F TUBULAR RESISTOR; FXD; 100K1% .125W F TUBULAR RESISTOR; FXD; 1.96K1% .125W F TUBULAR	24546 16299 24546 24546 16299	C4-1/8-T0-1001-F C4-1/8-T0-133R-F C4-1/8-T0-1073-F C4-1/8-T0-1003-F C4-1/8-T0-1003-F C4-1/8-T0-1961-F
A26A4R44 A26A4R45 A26A4R46 A26A4R47 A26A4R47	0698-3450 0757-0442 0698-3154 0757-0401 0757-0289		RESISTOR; FXD; 42.2K1% .125W F TUBULAR RESISTOR; FXD; 10K1% .125W F TUBULAR RESISTOR; FXD; 4.22K1% .125W F TUBULAR RESISTOR; FXD; 100 UHM1% .125W F RESISTOR; FXD; 13.3K1% .125W F TUBULAR	16299 24546 16299 24546 30983	
A26A4R49 A26A4R50 A26A4R51	0698-3150 0698-3451		RESISTOR; FXD; 2.37K1% .125W F TUBULAR RESISTOR; FXD; 133K1% .125W F TUBULAR NOT ASSIGNED	16299 16299	C4-1/8-T0-1333-F
A26A4R52 A26A4R53	0757-0280 0757-0278		RESISTOR; FXD; 1K1% .125W F TUBULAR RESISTOR; FXD; 1.78K1% .125W F TUBULAR	24546 24546	C4-1/8-T0-1781-F
A26A4R54 A26A451 A26A4TP1 A26A4TP2 A26A4TP2 A26A4TP3	0757-0421 3101-0973 0360-1514 0360-1514 0360-1514	1	RESISTOR; FXD; 825 OHMIX .125W F SWITCH, SL, DPDT NS, .5A 125VAC/DC TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD	24546 28480 28480 28480 28480 28480	3101-0973 0360-1514 0360-1514
A26A4TP4 A26A4TP5 A26A4TP6 A26A4TP7 A26A4TP8	0360-1514 0360-1514 0360-1514 0360-1514 0360-1514		TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD TERMINAL, SLDR STUD	28480 28480 28480 28480 28480 28480	0360-1514 0360-1514 0360-1514

See introduction to this section for ordering information **†** SEE TABLES 7-1 AND 7-2, FOR BACKDATING.

. •

.

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Numbe
A26A4U1	1826-0092		IC;LIN;OPERATIONAL AMPLIFIER	02735	CA3458T
A26A4U2 A26A4U3	1826-0026 1820-0328	1	INTEGRATED CIRCUIT, DGTL, VOLTAGE IC:DGTL;GATE	27014 01295	LM311H SN7402N
A26A4U4	1820-0471	1	IC;DGTL;INVERTER DIGDE; ZENER; 10V VZ; .4W MAX PD	01295 04713	SN7406N SZ 10939-182
A26A4VR1 A26A4VR2	1902-0025 1902-3203		DIODE; ZENER; 14.7V VZ; .4W MAX PD	04713	SZ 10939-230
A26A5	08640-60009	1	RISER ASSY	28480	08640-60009
A26A5XA26A6	1251-3231	1	CONNECTOR, PC EDGE, 15-CONT, WIRE WRAP	28480	1251-3231
A26A6	08640-60011	1	AM MOTHER BOARD ASSY	28480	0864Ò-60011
A26A6XA26A2	1251-1886	1	CONNECTOR, PC EDGE, 15-CONT, DIP SOLDER	71785	2 52-15-30-340
	1				
	1	1			
					1

Table	6-3.	Replaceable Parts
-------	------	--------------------------

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
C1 C2 C3 C4 C5	0180-2530 0180-2530 0180-2334 0180-2277 0180-2277	2 1 2	CAPACITOR-FXD; 3900UF+75-10% 50VDC AL CAPACITOR-FXD; 3900UF+75-10% 50VDC AL CAPACITOR-FXD; 3900UF+75-10% 75VDC AL CAPACITOR-FXD; 8200UF+75-10% 25VDC AL CAPACITOR-FXD; 8200UF+75-10% 25VDC AL	56289 56289 56289 56289 56289 56289	36D392G050AC2B 36D392G050AC2B 36D392F075B82B 36D822G025AC2A 36D822G025AC2A
C6 DS1 F1 F1	0160-4048 2140-0244 2110-0002 2110-0001	1 1 1 1	CAPACITOR;FXD; .022UF+-20% 250WVDC LAMP, GLOW, BULB T-2, 105V FUSE, 2A 250V (FOR 100/120V OPERATION) FUSE, 1A 250V	28480 87034 71400 71400	0160-4048 A1H AGE-2 AGE-1
МІ Т МР1 МР2	1120-0539 0360-0053 0340-0486 0370-2376	1 2 1 1	- GFOR 220/240V OPERATION) METER TERMINAL, SLDR LUG, 10 SCR, -204/-094 INSULATOR COVER, TO- 3, -33 THK KNOB:BAR, SKIRTED 0-250" DIA SHAFT	28480 78189 28480 28 4 80	1120-0539 2101-10-00 0340-0486 0370-2376
мрз	0370-2378	1	FREQUENCY RANGE KNOB:RND, CONCENTRIC 0.125" DIA SHAFT FM	28480	0370-2378
MP4	0370-2379	1	KNOB:RND, CONCENTRIC 0.125" DIA SHAFT Am	28 4 80	0370-2379
MP5	0370-2380	1	KNOB:BAR BASE 0.250" DIA SHAFT	28480	0370-2380
MPGT	0370-2381	1	PEAK DEVIATION RANGE KNOB; BASE-CONC SKT; •5 IN; JGK	28480	0370-2381
MP7	0370-2382	1	(OPTION OOI) AUD OUT 3V KNOB:RND, SKIRTED 0.250" DIA SHAFT (Standard) Mod Freq.	28480	0370-2382
MP8	0370-2383	1	KNDB, BASE, PTR, .375 IN, JGK, MGP	28480	0370-2383
MP9	0370-2387	1	FINE TUNE KNOB; BASE-CONC SKT; .5 IN; JGK (STANDARD) AUD OUT 1V	28480	0370-2 387
MP10	0370-2445	1	KNOB, BASE, RND, .5 IN, JGK, MGP DECAL	28480	0370-2445
MP11	0370-2446	1	OUTPUT LEVEL VERNIER KNOB, CONC, RND, .5 IN, JGK, MGP DECAL	28480	0370-2446
MP12	0403-0026		(OPTION 001) MOD FREQ. VERNIER GLIDE:NYLON	28480	0403-0026
MP13 MP14 MP15 MP16 MP17	0590-1011 1400-0825 1540-0034 4040-0976 3150-0203	3 1 1 1 1	NUT; KNRLD R 15/32-32 .12 X .61; BRS; INSULATOR, MISC, CLIP PANEL, .201 ID CONTAINER-CS, PLSTC, W/HINGED LID CLAMP:CAP FILTER, EXPANDED ALUMINUM	28480 28480 28307 00000 28480	0590-1011 1400-0825 1CAK 0BD 3150-0203
MP18 MP19 MP20 MP21 MP21 MP22	5001-0135 5060-0109 08640-00063 08640-00021 08640-4044	1 1 1	WRENCH:COMBINATION CONNECTOR:15 CONTACTS PANEL:FRONT Shield:FM Amplifier Screw:Meter Zero	28480 28480 28480 28480 28480 28480	5001-0135 5060-0109 08640-00063 08640-00021 08640-4044
MP23 MP24 MP25 MP26 MP27	08640-00022 08640-00030 08640-00058 08640-00059 08640-20078	1 1 1	SUPPORT:PC BOARD Support:Module Insulator:Counter Insulator:Connector Extrusion:Top	28480 28480 28480 28480 28480 28480	08640-09022 08640-09030 08640-00058 08640-00059 08640-20078
MP28 MP29 MP30 MP31 MP32	08640-20079 08640-20085 08640-20204 08640-40016 08640-40026	1 1 1	EXTRUSION:BOTTOM Coupler:Shaft Front Casting:5h FM Clamp:Meter Knob/Dial Assy:Output Level	28480 28480 28480 28480 28480 28480	08640-20079 08640-20085 08640-20204 08640-40016 08640-40026
MP33 MP34	08640-40046 08640-40047	3	LENS:DIFFUSING KNOB/DIAL ASSY	28480 28480	08640-40046 98640-40947
MP34 MP35 MP36	08640-40049 08640-40051		(OFTION OOI) MOD FREQ. RANGE WINDOW:FRONT DIAL AND GEAR ASSY (OFTION 001) MOD FREQ. VERNIER SKIRT	28480 28480	08640-40049 08640-40051
MP37 MP38 MP39 MP40	08640-40055 08640-40056 08640-60036 5040-0388	1 1 1 1	KNOB AND SKIRT: FREQUENCY TUNE SKIRT: OUTPUT LEVEL CURSOR BOARD ASSY:EXTENDER BUTTON: X10%	28480 28480 28480 28480 28480	08640-40055 08640-40056 08640-60036 5040-0388
MP41 MP42 MP43	5040-0389 5040-0390 3030-0007	1	BUTTON:K/MHZ Button:Volts Screw;Set; 4-40 UNC-3A .125 IN (Front Panel Knobs) Concurrentiate (20 ASA Type B 425 IN	28480 28480 28480 28480	5040-0389 5040-0390 3030-0007 0624-0267
MP44	0624-0267	8	SCREW;TAPPING; 6-20 ASA TYPE B .625 IN	28480	0626-0002
MP45 MP46 MP47 MP48 MP49	0626-0002 1200-0043 3160-0217 5040-0170 3030-0007	2 5 1 2	SCREW;TAPPING; 6-20 ASA TYPE AB .5 IN INSULATOR, XSTR, TO- 3, .02 THK FAN-BLADE, AXL, 3 DD .079D GUIDE:PLUG-IN PC BOARD SCREW;SET; 4-40 UNC-3A .125 IN	28480 76530 28480 28480 28480	322047 3160-0217 5040-0170 3030-0007
1		1		1	

)

Table 6-3. Replaceable Parts

Reference Designation	HP Part Number Qty		Part Number Qty Description		Mfr Part Numb
MP50	5040-0447	2	FOOT:REAR(LONG)	28480 28480	5040-0447 08620-00019
MP51 MP52	08620-00019 08620-20016	2 1	BRACKET:FAN HEAT SINK:TRANSISTOR	28480	08620-20016 08640-00014
MP53 MP54	08640-00014 08640-00015	1 1	DECK:TRANSFORMER DECK:MAIN	28480 28480	08640-00015
MP55	08640-00065	1	SHIELD:ATTENUATOR	28480	08640-00065
MP56 T MP57 T	0400-0005 0403-0026	1	GROMMET:RUBBER FOR 0.562" DIA HOLE GLIDE:NYLON	73734 28480	#1660 0403-0026
MP58	8160-0238	1	GASKET MATL;RFI; RING MONEL (MAIN TUNE)	28480	8160-0238
MP59 t	8160-0239	1	GASKET MATL;RFI; RING MONEL	28480	8160-0239
MP60	08640-20228	1	(FINE TUNE) COLLAR:RETAINING	28480	08640-20228
MP61	08640-40052	1	(FINE TUNE SHAFT) Lever Slide Switch	28480	08640-40052
P1	1251-3294	1	CONNECTOR, PC EDGE, 10-CONT, SOLDER EYE	05574 71785	3VH10/1JN12 251-06-30-261
P2	1251-0198 5040-0327		CONNECTOR, PC EDGE, 6-CONT, SOLDER EYE Hood:Connector	28480	5040-0327
P3	1251-1249		CONNECTOR-POLARIZING KEY, FOR SER Contact, conn, u/w micro ser, fem	13511 13511	143-953 220-502
	1251-1313 1251-3054		CONNECTOR STRIP:9 OPEN POSITION	74868	221-68
01	1854-0063	4	TRANSISTOR NPN 2N3055 SI PD=115W Transistor NPN 2N3055 SI PD=115W	28480 28480	1854-0063 1854-0063
Q2 Q3	1854-0063 1854-0250 1854-0063	1	TRANSISTOR NPN SI PD=115W TRANSISTOR NPN 2N3055 SI PD=115W	28480 28480	1854-0250 1854-0063
Q4 Q5,	1854-0063		TRANSISTOR NPN 2N3055 SI PD=115W	28480	1854-0063
R1 R2	2100-3344	1	R:VAR DUAL 2K/20K OHM 20/10% LIN (PART OF R1)	28480 16299	2100-3344 C4-1/8-T0-2872-F
R3 † S1 †	0698-3449 3101-1395	1	RESISTOR; FXD; 28.7K1% .125W F TUBULAR Switch; PB 1-Sta rect DPDT	87034	53-67280-121/A1H
S2	3101-0070	1	SWITCH, SL, DPDT NS, .5A 125VAC/DC Switch, TGL, SPDT 5A/115VAC ON-NONE-ON	28480 09353	3101-0070 7101
53 T1	3101-0163 08640-20057	1	INSULATOR: TRANSISTOR SCREW	28480 70903	08640-20057 KH-7081
W1 W2	8120-1378 8120-1886	1	CABLE, UNSHLD 3-COND 18ANG Cable:Coax Assy(9.579)	94142	C-8120-1886-1
W3	8120-1890	1	CABLE:COAX ASSY(11.764)	94142 28480	C-8120-1890-1 08640-60127
W4 W5	08640-60127 8120-1928	1 2	CABLE ASSY:FM INPUT/OUTPUT CABLE, SHLD 2-COND 24AWG	28480	8120-1928
₩6 ₩7	8120-1881 8120-1882		CABLE:COAX ASSY(2.737) CABLE:COAX ASSY(789)	94142 94142	B-8120-1881-1 A-8120-1882-1
W8	8120-0580	1	CABLE:COAX ASSY(3.224)	94142 28480	A-8120-0580-1 8120-1928
W9 W10	8120-1928 8120-0581	1	CABLE, SHLD 2-COND 24AWG CABLE:CDAX ASSY(5.409)	94142	C-8120-0581-1
W11 W12	8120-1885 08640-60128	1	CABLE:COAX ASSY(2.864) CABLE ASSY:AM INPUT/OUTPUT	94142 28480	A-8120-1885-1 08640-60128
W13	8120-1182	1	CABLE, SHLD 2-COND 24AWG	83501 94142	DBD A-8120-1891-1
W14 W15	8120-1891 08640-60124	1	CABLE:COAX ASSY(12.104) CABLE ASSY:EXTERNAL TIME BASE	28480	08640-60124
		1			
		1			
		1			
	· ·				
		ļ			
				1	
ł					
1					
1		1	1		
		1			
· ·					
		1	1	1	

See introduction to this section for ordering information SEE TABLES 7-1 AND 7-2, FOR BACKDATING.

(

Table	<i>6-3</i> .	Replaceable Parts
-------	--------------	-------------------

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
1 2 3 4 5 6 7 8 9 10 11 12 13 14	08640-20075 08640-20204 08640-00026 5000-8705 5000-8707 08640-00003 08640-00004 5060-0222 5060-8737 5060-0767 1490-0030 5000-0051 5060-8740 5000-8711	2 3 1 2 2 1 1 2 2 5 1 2 1 1	FIGURE 6-1. CABINET PARTS FRAME ASSY:5 X 16 FRONT CASTING:5H FM PANEL:REAR COVER; SIDE:PERFORATED COVER:FRONT SIDE COVER:BOTTOM HANDLE ASSY:5H SIDE HANDLE ASSY:FM WIREFORM TRIM STRIP KIT:RACK MOUNT, 5H(MINT GRAY) COVER:FRONT SIDE PLATE(MINT GRAY)	28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480 28480	08640-20075 08640-20204 08640-00026 5000-8705 5000-8707 08640-00004 5060-0222 5060-8737 5060-0767 1490-0030 5000-0051 5060-8740 5000-8711
5				3	
	E C				

See introduction to this section for ordering information

ł

-

:::

Table	6-3.	Replaceable Parts
-------	------	-------------------

Reference Designation	HP Part Number	Qty	Description	Mfr Code	Mfr Part Number
J1MP1 J1MP2 J1MP3 J1MP4 J1MP5 J1MP6 J1MP7 J1MP8	1250-0914 1250-0915 2190-0104 2950-0132 5040-0306 08555-20093 08555-20094 08761-2027	1 1 1 1 2 1 1	FIGURE 6-2. TYPE N CONNECTOR CONNECTOR-COAX,APC-N, 50 OHM FEMALE CONTACT:RF CONNECTOR WASHER:LOCK 0.439" ID NUT:HEX 7/16-28 INSULATOR CENTER CONDUCTOR BODY:BULKHEAD INSULATOR	28480 28480 00000 28480 28480 28480 28480 28480	1250-0914 1250-0915 OBD 5040-0306 08555-20093 08555-20094 08761-2027
		3			у

See introduction to this section for ordering information

Table 6-4.	Code List of	f Manufacturers
------------	--------------	-----------------

MER			ZIP
NO.	MANUFACTURER NAME	ADDRESS	CODE
00000	U.S.A.COMMON		
00014	U.I.D. ELECTRONICS CORP.	HOLLYWOOD, FL	33021
0004A	ARIZONA COIL INC	NDGALES AZ	85621
00287	C E M CO INC	DANIELSON CT	06239
01121	ALLEN BRADLEY CO	MILWAUKEE WI	53212
01295	TEXAS INSTR INC SEMICOND CMPNT DIV	DALLAS TX	75231
02735	RCA CORP SOLID STATE DIV	SOMMERVILLE NJ	08876
03888	PYROFILM CORP	WHIPPANY NJ	07981
04713	MOTOROLA SEMICONDUCTOR PRODUCTS	PHOENIX AZ	85008
05574	VIKING INDUSTRIES INC	CHATSWORTH CA	91311
07263	FAIRCHILD SEMICONDUCTOR DIV	MOUNTAIN VIEW CA	94040
09353	C AND K COMPONENTS INC	WATERTOWN MA	02172
12697	CLAROSTAT MEG CO INC	DOVER NH	03820
13511	CINCH MFG. CO.	SHELBYVILLE, IN.	46176
16299	CORNING GL WK ELEC CMPNT DIV	RALEIGH NC	27604
19701	MEPCO/ELECTRA CORP (MF RES)	MINERAL WELLS TX	76067
24226	GOWANDA ELECTRONICS CORP	GOWANDA NY	14070
24546	CORNING GLASS WORKS (C STYLE RES)	BRADFORD PA	16701 46227
24931	SPECIALTY CONNECTOR CO INC	INDIANAPOLIS IN Palo Alto ca	94304
24995	ENVIRONMENTAL CNTNR SYS(CRATE-RITE)	NEW ROCHELLE NY	10802
26365	GRIES REPRODUCER CORP	CHICAGD IL	60656
26742 27014	METHODE ELECTRONICS INC	SANTA CLAPA CA	95051
28307	NATIONAL SEMICONDUCTOR CORP Bradley Industries Inc	FRANKLIN PARK IL	60131
28480	HEWLETT-PACKARD CO CORPORATE HQ	PALO ALTO CA	94304
30983	MEPCO/ELECTRA CORP (VAR RES)	SAN DIEGO CA	92121
32255	DATRON SYSTEM INC	CHATSWORTH CA	91711
32997	BOURNS INC TRIMPOT PROD DIV	RIVERSIDE CA	92507
50443	HEWLETT-PACKARD COMPANY	SANTA CLARA, CA	95050
56289	SPRAGUE ELECTRIC CO	NORTH ADAMS MA	01247
70903	BELDEN CORP	CHICAGO IL	60644
71400	BUSSMAN MFG DIV OF MCGRAW-EDISON CO	ST LOUIS MO	63017
71744	CHICAGD MINIATURE LAMP WORKS	CHICAGO IL	60640
71785	TRW ELEK COMPONENTS CINCH DIV	ELK GROVE VILLAGE IL	60007
72136	ELECTRD,MOTIVE MEG CO INC	WILLIMANTIC CT	96226
73076	ITT HARPER INC	CHICAGO IL	60606
73734	FEDERAL SCREW PRODUCTS CO	CHICAGD IL	60618
73899	J F D ELECTRONICS CORP	BROOKLYN NY	11219
74868	BUNKER-RAMO CORP, AMPHENOL CADRE DIV	ENDICOTT, N.Y.	13760
75042	TRW INC PHILADELPHIA DIV	PHILADELPHIA PA	19108
76530	TRW ELEK CMPNT CINCH-MONADNOCK DIV	CITY OF INDUSTRY CA	91747
76854	DAK IND INC SW DIV	CRYSTAL LAKE IL	60014
78189 79136	ILLINDIS TOOL WORKS INC SHAKEPROOF	ELGIN IL	69126 11101
80120	WALDES-KOHINOOR INC Schnitzer Alloy products cr	LONG ISLAND CITY NY Elizabeth nj	07206
80486	ALL STAR PROD INC	DEFIANCE OH	43512
83330	SMITH HERMAN H INC	BROOKLYN NY	11207
83501	GAVITT WIRE & CABLE	BROOKFIELD MA	01506
84411	TRW CAPACITOR DIV	OGALLALA NE	69153
86928	SEASTROM MEG CO	GLENDALE CA	91201
87034	MARCO-DAK DIV DAK IND INC	ANAHEIM CA	92803
91637	DALE ELECTRONICS INC	COLUMBUS NE	68601
94142	PHELPS-DODGE CORP.	NEW YORK, N.Y.	10022
95121	QUALITY COMPONENTS INC	ST MARYS PA	15857
95987	WECKESSER CO INC	CHICAGO IL	60641
98291	SEALECTRO CORP	MAMARONECK NY	10544

SECTION VII MANUAL CHANGES

7-1. INTRODUCTION

7-2. This section contains manual change instructions for backdating this manual for HP Model 8640B Signal Generators that have serial number prefixes that are lower than the prefix listed on the title page. This section also contains instrument modification suggestions and procedures that are recommended to improve the performance and reliability of your generator.

7-3. MANUAL CHANGES

7-4. To adapt this manual to your instrument, refer to Table 7-1 and make all of the manual

changes listed opposite your instrument's serial number or prefix. The manual changes are listed in serial number sequence and should be made in the sequence listed. For example, Change A should be made after Change B; Change B should be made after Change C; etc. Table 7-2 is a summary of changes by component.

7-5. If your instrument's serial number or prefix is not listed on the title page of this manual or in Table 7-1, it may be documented in a yellow MANUAL CHANGES supplement. For additional important information about serial number coverage, refer to INSTRUMENTS COVERED BY MANUAL in Section I.

Serial Prefix or Number	Make Manual Changes	1	Serial Prefix or Number _	Make Manual Changes
1229A00120 and below	N, M, L, K, J, I, H, G, F, E, D, C, B, A		1303A	N, M, L, K, J, I, H
1229A00121 to 00140	N, M, L, K, J, I, H, G, F, E, D, C, B		1310A	N, M, L, K, J, I
1244A	N, M, L, K, J, I, H, G, F, E, D, C		1313A	N, M, L, K, J
1245A	N, M, L, K, J, I, H, G, F, E, D		1316A00385 to 00464	N, M, L, K
1246A	N, M, L, K, J, I, H, G, F, E		1316A00465 and above	N, M, L
1249A	N, M, L, K, J, I, H, G, F		1322A	N, M
1251A	N, M, L, K, J, I, H, G		1323A	N

Table 7-1. Manual Changes By Serial Number

Change	A1	A2	A3	A4	A5	A6	A7	A8	A9	A10
A					Insulators for Q5-9 and Q11		Insulators for Q3 and Q6			
В		V R3*,4*						A2C11,12, 19,27* A2L1* A2R46*, 56,57* A4R4*		
С			MP15,16 R2 A4(entire sub-assy)							
D										
E			A4R2				J1* A7 Assy Part No.	L1-3 A1 (entire sub-assy)	C6-8* W1*	A10A1MP10, 12*
F							A1C7*			×
G			C9*					A2C12* A2L2* A2R48*		
Н										
I										
J								A1 Part No. A1C7, CR1-6, MP2-4 A103,R1-3 A2C27-30		
к									A2C5*	
L										
M							R13,21-28, 37,40, 45-54, 57-65			
N								A4R3*, 5 A4XDS1A, B		A2R6-8, 12-14, 18-20

Table 7-2. Summary of Changes by Component (1 of 2)

.

P

hange	A11	A12	A13	A14	A17	A18	A20	A22	A26	No Prefix
Α	Insulators for Q1, Q2, Q4, and Q5 (STD) and Q3 and Q6 (Opt. Q01)					Insulators for Q2, Q5, Q7, Q10, and Q12	Insulators for Q2-4	Insulators for Q2 and Q3		
В	R7*, 14* (STD) R36*, 39* (Opt. 001)								A1Q1*	R4,5
C							E .			
D			R1						A1R16,17 A4C10* A4R54*	MP59* MP60*
E							-		A202-9 A2U1,2	MP56 MP57
F	-	CR5-8 CR13-16 R4, R6								
G										M1* MP20*,2
H									A2CR9* A4R13*,15* 22*,41*,42*	
									A4C14*	
J						R19*	R27*	R26*,27*		
к								· ·		
										R1* MP6*,9
M	R34, 35								_	111 0 ,5
										C6

Table 7-2. Summary of Changes by Component (2 of 2)

7-3

-

MANUAL CHANGES

7-6. MANUAL CHANGE INSTRUCTIONS CHANGE A Pages 6-7 and 6-8, Table 6-3: Delete 1200-0173, INSULATOR, XSTR from A5Q5-9 and Q11. Page 6-9, Table 6-3: Delete 1200-0173, INSULATOR, XSTR from A7Q3 and Q6. Page 6-23, Table 6-3: Delete 1200-0173, INSULATOR, XSTR from A11Q1, Q2, Q4, and Q5. Page 6-24, Table 6-3: Delete 1200-0173, INSULATOR, XSTR from A11Q3 and Q6. Pages 6-28 and 6-19, Table 6-3: Delete 1200-0173, INSULATOR, XSTR from A18Q2, Q5, Q7, Q10, Q12 and A20Q2-4. Page 6-31, Table 6-3: Delete 1200-0173, INSULATOR, XSTR from A22Q2 and Q3. CHANGE B NOTE See paragraphs 7-9 through 7-19 for recommended instrument modifications. Page 5-11, paragraph 5-40: Change third sentence to read, "... for 750 ± 10 mVrms at A11TP5 740 _____760 mVrms." Pages 6-12 through 6-14, Table 6-3: Change A8A2C11 and C12 to 0160-3466; CAPACITOR; FXD; 100 PF ±10%. Change A8A2C19 to 0140-0193; CAPACITOR; FXD; 82 PF ±5%. Delete A8A2C27. Delete A8A2L1. Add A8A2R46 0757-0416; RESISTOR; FXD; 511 OHM 1% .05W. Change A8A2R56 to 0811-1665; RESISTOR; FXD; 0.82 OHM 5% 2W. Delete A8A2R57. Page 6-16, Table 6-3: Add A8A4R4 0698-3628 RESISTOR; FXD; 220 OHM 5% 2W. Page 6-33, Table 6-3: Change A26A1Q1 to 1853-0007. Page 6-39, Table 6-3: Add R4 0757-0458 RESISTOR: FXD; 51.1K, 1/8W F. Add R5 0757-0462 RESISTOR; FXD; 75.0K 1/8W F.

CHANGE B (cont'd)

Service Sheet 9 (schematic):

Change A11R7 to 1470 ohms and A11R14 to 3160 ohms.

Add R4, 51.1K between 958 and 956 wires.

Add R5, 75K between 956 and 0 wires.

NOTE

If R1, AUDIO OUTPUT LEVEL vernier is changed, remove R4 and R5 from instrument.

Change voltage at A11TP3 and TP5 to 2.1 ± 0.1 V p-p.

Service Sheet 9A (schematic):

Change A11R36 to 4640 ohms and A11R39 to 3160 ohms.

Add R4, 51.1K between 958 and 956 wires.

Add R5, 75K between 956 and 0 wires.

NOTE

If R1, AUDIO OUTPUT LEVEL vernier is changed, remove R4 and R5 from instrument.

Change voltage at A11TP3 and TP5 to 2.1 ± 0.1 V p-p.

Service Sheet 13 (schematic): Change A26A1Q1 to 1853-0007.

Service Sheet 17 (schematic):

Add A2VR3 and A2VR4 (in series with each other) in parallel with A2R3.

NOTE

See paragraph 7-9. A2VR3 and VR4 should be removed from instrument.

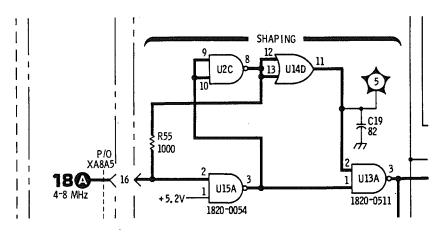
Service Sheet 20 (schematic):

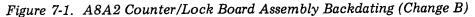
Replace appropriate portion of schematic with attached partial schematic (Figure 7-1).

Change A8A2C11 to 100 pF.

Delete A8A2C27.

Delete A8A2L1 and in its place add A8A2R46, 511 ohms.


Add A8A4R4 between pin 2 and A8A4DS2.


Change A8A2R56 to 0.82 ohm. Change +4.5V at other side of A8A4DS2 to +20V.

ſ

MANUAL CHANGES

CHANGE B (cont'd)

CHANGE C

NOTE

See paragraph 7-20 for recommended instrument modification.

```
Page 5-28, paragraph 5-38:
Delete step 7.
```

Pages 5-33 and 5-34, paragraph 5-40:

Step 1: Change "FREQUENCY TUNE ... 24 MHz" to "FREQUENCY TUNE ... 16 MHz."

Step 2: Change "24 MHz" to "16 MHz."

Step 4: Delete entire step.

Step 5: Change reference designator A3A4R2 to A3A4R3.

Step 6: Change reference designator A3A4R4 to A3A4R5.

Step 7: Delete "24".

Page 6-6, Table 6-3:

Change A3R2 to 2100-3266 RESISTOR; VAR; CONT, RREC, 1K 5%.

Delete A3MP15 and MP16.

Delete A3A4 (entire sub-assembly list) and add the following:

A3A4R1	0757 - 0442	RESISTOR; FXD; 10.0K 1% 1/8W.
A3A4R2	2100-3161	RESISTOR; VAR; 20K 10% TYPE P 3/4W.
A3A4R3	2100-3123	RESISTOR; VAR; 500 OHM 10% TYPE P 3/4W.
A3A4R4	0757-0280	RESISTOR; FXD; $1K 1\% 1/8W$.
A3A4R5	2100 - 3154	RESISTOR; VAR; 1000 OHM 10% TYPE P 3/4W.
A3A4TP1		TERMINAL PIN: SQUARE.
	1400-0024	CLAMP, CABLE NYLON 1/4 DIA.

Service Sheet 5 (schematic):

```
Change Reference Designators "A3A4R6" to "A3A4R1" and "A3A4R1" to "A3A4R2".
```

CHANGE C (cont'd)

Service Sheet 6 (schematic):

Replace A3A4 with attached partial schematic (Figure 7-2):

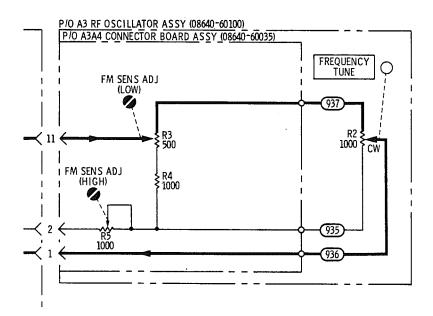


Figure 7-2. A3A4 Connector Board Assembly Backdating (Change C)

CHANGE D

NOTE

See paragraph 7-23 for recommended instrument modification.

Page 6-33, Table 6-3: Delete A26A1R16 and R17.

Page 6-35, Table 6-3: Change A26A4C10 to 0170-0066 CAPACITOR; FXD; 0.027 UF ±10% 200 WVDC.

Page 6-36, Table 6-3: Delete A26A4R54.

Page 6-39, Table 6-3: Delete MP59 and MP60.

Service Sheet 12 (schematic): Delete A26A4R54. Change A26A4C10 to 0.027 UF.

Service Sheet 13 (schematic): Replace appropriate portion of schematic with attached partial schematic (Figure 7-3).

Service Sheet 14 (schematic): Add a ground symbol at the junction of A13R1 and A13S2BF.

₹.2

MANUAL CHANGES

CHANGE D (cont'd)

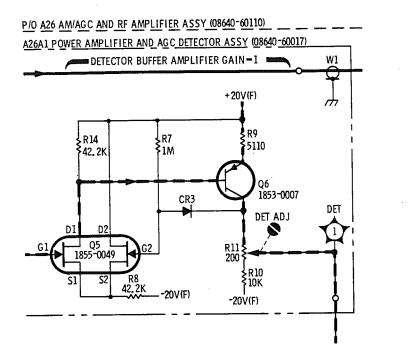


Figure 7-3. A26A1 Power Amplifier and AGC Detector Assembly Backdating (Change D)

CHANGE E

NOTE

See paragraphs 7-26 through 7-35 for recommended instrument modifications.

Page 5-2, paragraph 5-21.

Delete section a. A8A1R4 Selection.

Add the following:

a. A8A1R1 Selection. A8A1R1 is always 620 ohms in parallel with a resistor selected as follows:

- 1. Set COUNTER MODE to EXT 0-10 MHz.
- 2. Connect RF OUTPUT (-10 dBm at 8 MHz) to COUNTER INPUT.
- 3. Connect a 10-ohm linear pot across A8A1R1 (two test points beside U5).
- 4. Counter should hold a stable count. Decrease OUTPUT LEVEL vernier until counter just goes into random counting.
- 5. Adjust pot for a stable count.
- 6. Repeat steps 4 and 5 until the minimum input for stable counting is reached.

CHANGE E (cont'd)

Page 5-2, paragraph 5-21 (cont'd):

- 7. Without changing pot resistance, remove pot and measure its resistance. It should typically be 4500 ohms.
- 8. Solder nearest standard value resistor in parallel with A8A1R1 (across test points).

Page 5-2, Table 5-1:

Delete A8A1R4.

Add the following:

A8A1R1	18	620 ohms	See Paragraph 5-21.

Page 6-6, Table 6-3:

Change A3A4R2 to 2100-3161 RESISTOR; VAR; 20K 10% TYPE P 3/4W.

Page 6-9, Table 6-3:

Change assembly part number for A7 to read as follows:

A7 08640-60030 FM SHAPING ASSY.

A7 08640-60084 REBUILT 08640-60030, REQUIRES EXCHANGE.

Delete A7J1.

Page 6-11, Table 6-3:

Change A8L1, L2 and L3 to 9140-0210 COIL, FXD, CHOKE, 100 UH 5%.

Page 6-12, Table 6-3:

Delete A8A1 (entire sub-assembly) and add the following:

A8A1	08640-60038	COUNTER/LOCK ASSY
A8A1	08640-60083	REBUILT 08640-60038, REQUIRES EXCHANGE
A8A1C1	0180-0197	C: FXD ELECT 2.2 UF 10% 20VDCW
A8A1C2	0180-0197	C: FXD ELECT 2.2 UF 10% 20 VDCW
A8A1C3	0160-3879	C: FXD CER 0.01 UF 20% 100 VDCW
A8A1C4	0160-3879	C: FXD CER 0.01 UF 20% 100 VDCW
A8A1CR1	1901-0050	DIODE: SI 200 MA AT 1V
A8A1CR2	1901-0050	DIODE: SI 200 MA AT 1V
A8A1CR3 A8A1CR4 A8A1CR5 A8A1CR6 A8A1J1		DIODE: SI 200 MA AT 1V DIODE: SI 200 MA AT 1V CONNECTOR: RF 50 OHM SCREW ON TYPE
A8A1J2 A8A1K1 A8A1K2 A8A1Q1 A8A1Q2	$1250-1220\\0490-1073\\0490-1073\\1854-0404\\1854-0404$	CONNECTOR: RF 50 OHM SCREW ON TYPE RELAY RELAY TSTR: SI NPN TSTR: SI NPN

. j

CHANGE E (cont'd)

Page 6-12, Table 6-3 (cont'd):

A8A1R1	0698-6648	R: FXD COMP 620 OHM 5% 1/8W
A8A1R2	0698-6648	R: FXD COMP 620 OHM 5% 1/8W
A8A1R3	0757-0416	R: FXD MET FLM 511 OHM 1% 1/8W
A8A1R4	0757-0394	R: FXD MET FLM 51.1 OHM 1% 1/8W
A8A1R5	0757-0416	R: FXD MET FLM 511 OHM 1% 1/8W
A8A1R6	0757-0416	R: FXD MET FLM 511 OHM 1% 1/8W
A8A1R7	0757-1094	R: FXD MET FLM 1.47K OHM 1% 1/8W
A8A1R8	0757-0279	R: FXD MET FLM 3.16K OHM 1% 1/8W
A8A1U1	1820-0736	IC: DIGITAL
A8A1U2	1820-1003	IC: ECL HEX CONVERTER
A8A1U3 A8A1U4 A8A1U5	1820-0145 1820-0102 5088-7001 1251-1556	IC: DIGITAL QUAD 2-INPUT NOR GATE INTEGRATED CIRCUIT: J-K FLIP FLOP IC: AMP AND TRIG CONNECTOR: SINGLE CONTACT

Page 6-16, Table 6-3:

Add A9C6 CAPACITOR; FXD; 150 PF 5%. Add A9C7 CAPACITOR: FXD; 750 PF 5%. Add A9C8 CAPACITOR; FXD; 1500 PF 5%.

Page 6-17, Table 6-3:

Delete A9W1.

Page 6-20, Table 6-3:

Change A10A1MP10 to 08640-40050. Delete A10A1MP12.

Page 6-34, Table 6-3:

Change A26A2Q2, Q5 and Q6 to 1854-0071 TRANSISTOR NPN SI PD=300 MW FT=200 MHZ. Change A26A2Q7 to 1854-0023 TRANSISTOR NPN SI PD=360 MW FT=15 MHZ. Change A26A2Q3, Q4, Q8 and Q9 to 1853-0020 TRANSISTOR PNP SI PD=300 MW FT=150 MHZ. Change A26A2U1 to 1820-0398 IC: DIFF COMPARATOR AVOL = 1K MIN. Change A26A2U2 to 1820-0370 IC: TTL HS QUAD 2 INPUT NAND GATE.

Page 6-39, Table 6-3:

Delete MP56 and MP57.

Service Sheet 6 (schematic):

Add A9C6, 150 pF in parallel with A9R18.

Add A9C7, 750 pF in parallel with R20.

Add A9C8, 1500 pF in parallel with R22.

Delete shielded cable A9W1 and in its place add 948 wire (white-yellow-gray).

Change A3A4R2 to 20K.

CHANGE E (cont'd)

Service Sheet 7 (schematic):

Delete shielded cable A9W1 and in its place add 948 wire (white-yellow-gray).

Delete Reference Designator A7J1.

Change part number of A7 assembly to 08640-60030.

Service Sheet 8 (schematic): Change part number of A7 assembly to 08640-60030.

Service Sheet 13 (schematic):

Change A26A2Q7 to 1854-0023.

Change A26A2Q8 and Q9 to 1853-0020.

Change A26A2U1 to 1820-0398.

Change A26A2U2 to 1820-0370.

Change the pin configuration on the symbol and drawing for A26A2U1 shown in Figure 7-4.

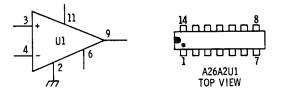


Figure 7-4. A26A2U1 Backdating (Change E)

Service Sheet 14 (schematic):

Change A26A2Q2, Q5 and Q6 to 1854-0071. Change A26A2Q3 to 1853-0020.

Service Sheet 18 (schematic):

Delete A8A1C3.

Change the following reference designators:

A8A1R8 to A8A1R3. A8A1R9 to A8A1R5. A8A1R10 to A8A1R7. A8A1R11 to A8A1R6.

Change U5 to 5080-7001.

Replace appropriate portion of schematic with attached partial schematic (Figure 7-5).

.

MANUAL CHANGES

CHANGE E (cont'd)

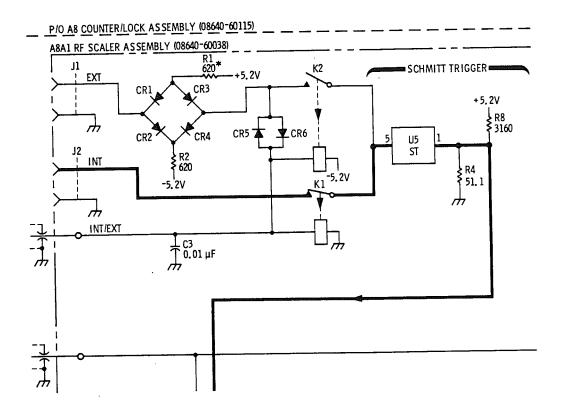


Figure 7-5. A8A1 RF Scaler Assembly Backdating (Change E)

CHANGE F

Page 6-12, Table 6-3: Delete A8A1C7.

Service Sheet 18 (schematic): Delete A8A1C7.

Service Sheet 22 (schematic):

Replace appropriate portion of schematic with attached partial schematic (Figure 7-6).

}

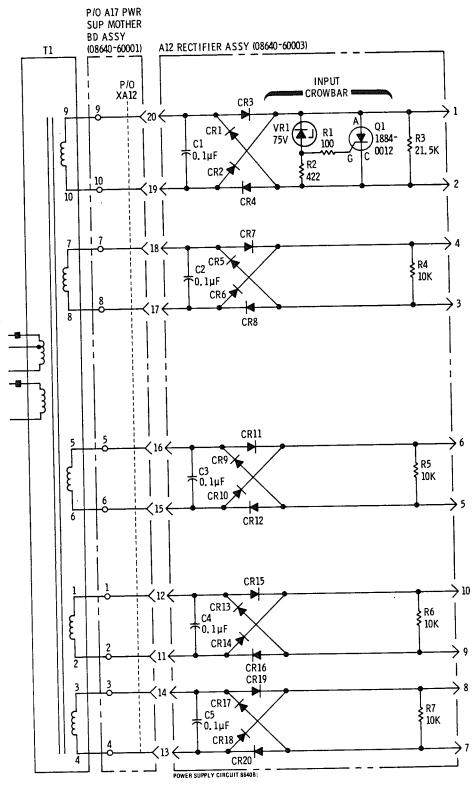


Figure 7-6. A12 Rectifier Assembly Backdating (Change F)

MANUAL CHANGES

CHANGE G

NOTE

See paragraphs 7-38 through 7-43 for recommended instrument modifications.

Page 6-7, Table 6-3: Delete A5C9.

Page 6-12, Table 6-3: Change A8A2C12 to 0160-3455 CAPACITOR; FXD; 470 PF ±10% 1000 WVDC.

Page 6-13, Table 6-3: Delete A8A2L2.

Page 6-14, Table 6-3: Add A8A2R48, 0698-7219 RESISTOR; FXD; 196 OHM 2% 1/8W.

Page 6-38, Table 6-3: M1, MP20 changed. See paragraph 7-42 for recommended instrument modification.

Service Sheet 6 (schematic): Delete A5C9.

Service Sheet 20 (schematic): Change A8A2C12 to 470 pF.

Delete A8A2L2 and in its place add A8A2R48 196 ohms.

CHANGE H

NOTE

See paragraph 7-44 for recommended instrument modification.

Page 6-33, Table 6-3: Change A26A2CR9 to 1910-0022 DIODE; GE; 5W1V.

Page 6-36, Table 6-3:

Change A26A4R13 and R15 to 0757-0199 RESISTOR; FXD; 21.5K 1% 1/8W.

Change A26A4R22 to 0757-1093 RESISTOR; FXD; 3K 1% 1/8W.

Change A26A4R41 and R42 to 0698-3156 RESISTOR; FXD; 14.7K 1% 1/8W.

Service Sheet 12 (schematic):

Change A26A4R13 and R15 to 21.5K.

Change A26A4R22 to 3K.

Change A26A4R41 and R42 to 14.7K.

1-

)

CHANGE I NOTE
See paragraph 7-46 for recommended instrument modification.
Page 6-35, Table 6-3: Change A26A4C14 to 0160-0134 CAPACITOR; FXD; 220 PF ±5% 300 WVDC.
Service Sheet 12 (schematic): Change A26A4C14 to 220 pF.
CHANGE J NOTE
See paragraphs 7-48 through 7-51 for recommended instrument modification.
Page 6-12, Table 6-3: Change A8A1 to 08640-60041 RF SCALER ASSY.
Delete A8A1C7.
Delete A8A1CR1-3.
Add A8A1CR1-4 1901-0518 DIODE: HOT CARRIER.
Add A8A1CR5, 6 1901-0050 DIODE: SI 200 mA at 1V.
Delete A8A1MP2-4.
Add A8A1Q3 1854-0071 TRANSISTOR NPN SI PD=300 MW FT=200 MHZ.
Change A8A1R1 to 0698-6648 RESISTOR; FXD; 620 OHM 5% 1/8W.
Add A8A1R2 0698-5103 RESISTOR; FXD; 430 OHM 5% 1/8W.
Add A8A1R3 0698-7248 RESISTOR; FXD; 3.16K 2% 1/8W.
Page 6-13, Table 6-3: Change A8A2C27 to 0160-3877 CAPACITOR; FXD; 100 PF 20% 200 WVDC. Delete A8A2C28, C29 and C30.
Page 6-29, Table 6-3: Delete A18R19.
Page 6-30, Table 6-3: Delete A20R27.
Page 6-31, Table 6-3: Delete A22R26 and R27.
Service Sheet 18 (schematic): Replace appropriate part of schematic with attached partial schematic (Figure 7-7).
Service Sheet 20 (schematic): Delete A8A2 C28, C29 and C30.

 $\left(\right)$

ĺ

CHANGE J (cont'd)

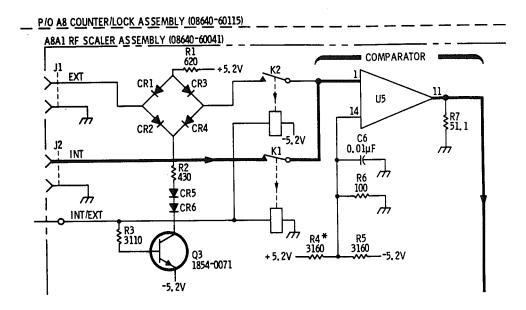


Figure 7-7. A8A1 RF Scaler Assembly Backdating (Change J)

Service Sheet 22 (schematic): Delete A20R27, A22R26 and R27.

Service Sheet 23 (schematic): Delete A18R19.

CHANGE K

NOTE

See paragraph 7-52 for recommended instrument modification.

Page 6-20, Table 6-3: Add A10A2C5 0160-3456 CAPACITOR; FXD; 1000 PF 10% 250 WVDC.

Service Sheet 11 (schematic): Add A10A2C5 between the collector of A10A2Q3 and ground.

CHANGE L

Page 6-39, Table 6-3:

R1 and AUDIO OUTPUT LEVEL knob changed. See paragraph 7-54 for recommended instrument modification.

CHANGE M

Page 6-10, Table 6-3: Change to read as follows:

A7R13	0698-3155	R: FXD MET FLM 4.64K OHM 1% 1/8W
A7R21	0698-3437	R: FXD MET FLM 133 OHM 1% 1/8W
A7R22	0757-0417	R: FXD MET FLM 562 OHM 1% 1/8W
A7R23	0698-0083	R: FXD MET FLM 1.96K OHM 1% 1/8W
A7R24	0757-0279	R: FXD MET FLM 3.16K OHM 1% 1/8W
A7R25	0698-3154	R: FXD MET FLM 4.22K OHM 1% 1/8W
A7R26	0757-0438	R: FXD MET FLM 5.11K OHM 1% 1/8W
A7R27	0757-0290	R: FXD MET FLM 6.19K OHM 1% 1/8W
A7R28	0757-0439	R: FXD MET FLM 6.81K OHM 1% 1/8W
A7R30	0698-4037	R: FXD MET FLM 46.4 OHM 1% 1/8W
A7R31	0698-4037	R: FXD MET FLM 46.4 OHM 1% 1/8W
A7R32	0698-4037	R: FXD MET FLM 46.4 OHM 1% 1/8W
A7R33	0698-4037	R: FXD MET FLM 46.4 OHM 1% 1/8W
A7R34	0698-4037	R: FXD MET FLM 46.4 OHM 1% 1/8W
A7R35	0698-4037	R: FXD MET FLM 46.4 OHM 1% 1/8W
A7R36	0698-4037	R: FXD MET FLM 46.4 OHM 1% 1/8W
A7R37	0757-0180	R: FXD MET FLM 31.6 OHM 1% 1/8W
A7R40	0757-0439	R: FXD MET FLM 6.81K OHM 1% 1/8W
A7R45	0698-3156	R: FXD MET FLM 14.7K OHM 1% 1/8W
A7R46	0757-0441	R: FXD MET FLM 8.25K OHM 1% 1/8W
A7R47	0757-0440	R: FXD MET FLM 7.50K OHM 1% 1/8W
A7R48	0757-0439	R: FXD MET FLM 6.81K OHM 1% 1/8W
A7R49	0757-0290	R: FXD MET FLM 6.19K OHM 1% 1/8W
A7R50	0757-0200	R: FXD MET FLM 5.62K OHM 1% 1/8W
A7R51	0757-0438	R: FXD MET FLM 5.11K OHM 1% 1/8W
A7R52	0698-3155	R: FXD MET FLM 4.64K OHM 1% 1/8W
A7R53	0757-0200	R: FXD MET FLM 5.62K OHM 1% 1/8W
A7R54	0757-0439	R: FXD MET FLM 6.81K OHM 1% 1/8W
A7R57	0757-0402	R: FXD MET FLM 110 OHM 1% 1/8W
A7R58	0757-0401	R: FXD MET FLM 100 OHM 1% 1/8W
A7R59	0757-0400	R: FXD MET FLM 90.9 OHM 1% 1/8W
A7R60	0757-0399	R: FXD MET FLM 82.5 OHM 1% 1/8W
A7R61	0757-0398	R: FXD MET FLM 75 OHM 1% 1/8W
A7R62	0757-0397	R: FXD MET FLM 68.1 OHM 1% 1/8W
A7R63	0757-0276	R: FXD MET FLM 61.9 OHM 1% 1/8W
A7R64	0757-0395	R: FXD MET FLM 56.2 OHM 1% 1/8W
A7R65	0757-0394	R: FXD MET FLM 51.1 OHM 1% 1/8W

Page 6-25, Table 6-3:

٩

Change A11R34 to 0757-0438 RESISTOR; FXD; 5.11K 1% 1/8W.

Change A11R35 to 2100-2633 RESISTOR; VAR; 1K 10% 1/2W LIN.

é.

٨.

۲.,

-5

CHANGE M (cont'd)

Service Sheet 7 (schematic) Change to read as follows:

A7R13	4640Ω	A7R30	46.4Ω	A7R45	14.7K	A7R54	6810Ω
A7R21	133Ω	A7R31	46.4Ω	A7R46	8250 Ω	A7R57	110Ω
A7R22	562Ω	A7R32	46.4Ω	A7R47	7500Ω	A7R58	100Ω
A7R23	1960Ω	A7R33	46.4Ω	A7R48	6810Ω	A7R59	90.9Ω
A7R24	3160 Ω	A7R34	46.4Ω	A7R49	6190Ω	A7R60	82.5Ω
A7R25	4220Ω	A7R35	46.4Ω	A7R50	5620Ω	A7R61	75.0Ω
A7R26	5110Ω	A7R36	46.4Ω	A7R51	5110Ω	A7R62	68.1Ω
A7R27	6190Ω	A7R37	31.6Ω	A7R52	4640Ω	A7R63	61.9Ω
A7R28	6810Ω	A7R40	6810 Ω	A7R53	5620Ω	A7R64	56.2Ω
						A7R65	51.1Ω

Service Sheet 9A (schematic):

Change A11R34 to 5110Ω .

Change A11R35 to 1000Ω .

CHANGE N

NOTE

See paragraph 7-56 for recommended instrument modification.

Page 5-2, Table 5-1: Delete A10A2R6-8, R12-14, and R18-20.

Pages 5-2 and 5-3, paragraph 5-21: Delete sections b. and c. A10A2R6-8, R12-14, and R18-20.

Page 6-16, Table 6-3:

Change A8A4R3 to 0757-0458 RESISTOR; FXD; 51.1K OHM ±1% 1/8W.

Delete A8A4R5.

Delete A8A4XDS1A/B.

Page 6-38, Table 6-3: Change C6 to 0160-0586 CAPACITOR; FXD; 0.022 UF ± 20% 100 WVDC.

Service Sheet 20 (schematic): Delete A8A4R5.

7-7. INSTRUMENT IMPROVEMENT MODIFICATIONS

7-8. Hewlett-Packard has developed certain recommended instrument modifications that can be used to improve the performance and reliability of earlier versions of the instrument. In some cases, replacing certain parts requires a modification to make these instruments compatible with parts now in use (if the original part is no longer available). These modifications are outlined in the following procedures and are keyed to instruments by serial number or serial number prefix.

7-9. Improved FM Metering Accuracy (Serial Prefix 1229A)

7-10. On instruments with serial number prefix 1229A, and with an A2 Meter/Switch Detector Assembly that has a 08640-60031 part number, FM metering accuracy can be improved at high modulation rates by removing the two 2.37V zener diodes, A2VR3 and A2VR4 (see Service Sheet 17). The diodes are in series with each other and in parallel with A2R3 (at the input to A2U1).

7-11. Elimination of Frequency Shift in Expand X100 Mode (Serial Prefix 1229A)

7-12. On instruments with serial number prefix 1229A, the frequency counter OVER FLOW lamp must be rewired to prevent RF Oscillator frequency shift when switching to the EXPAND X100 counter mode. The overflow lamp causes the +20 volt power supply voltage to drop, thus changing the RF Oscillator frequency. The modification rewires the overflow lamp to the +5.2 volt power supply and removes current limiting resistor A8A4R4, 220 ohms.

7-13. Perform the following steps and refer to Figure 7-8 and Service Sheet 20.

- 1. Remove instrument top cover (see Service Sheet F for procedure) and disassemble A8 Counter/Lock Assembly to gain access to the A8A2 and A8A4 Assemblies (see Service Sheet B for procedures).
- 2. Replace A8A2R57 (on A8A2 Counter/Lock Board Assembly with part number

08640-60027) with a 0.47 ohm resistor (HP 0811-1662). The existing value is 0.82 ohms. R57 is the current limiting resistor for the display LED's from the +5.2 volt supply.

- 3. On A8A4 Counter Display Assembly (with part number 08640-60025), unsolder and discard A8A4R4, a 220 ohm, 2 watt resistor.
- 4. Solder a length of insulated wire from top resistor pad of A8A4R4 (nearest overflow lamp) to narrow trace running down center of ground plane.
- 5. Reassemble counter and test OVER FLOW lamp operation as shown in Operator's Checks in Section III.

7-14. A8A2 Counter/Lock Board Assembly Improvements (Serial Prefix 1229A)

7-15. On instruments with serial number prefix 1229A and an A8A2 Assembly with part number 08640-60027, the following modifications will improve reliability (refer to Service Sheets 20 and 21):

- 1. In the phase lock mode, the pulse width into U4A and U28 may be insufficient to clear the stall counter, and the instrument will not lock. If the problem occurs, replace R48 with a 15 μ H inductor (L2, HP 9100-1620) and check that C12 is 100 pF.
- 2. In the count mode, the pulse width from the output of U17C may be insufficient to clear the counters (U19 to U24), and the count will be incorrect, usually all zeros. Should the problem occur, replace R46 with a 24 μ H inductor (L1, HP 9100-1622). Change C11 to 470 pF (HP 0160-3455).
- 3. In the phase lock mode, a low borrow output of U24 ripples through gates U13C and D to NOR gate U25B. The next clock pulse from U25A clocks the borrow into the countdown input of U23 (which clocks on a positive going pulse). If the borrow from U24B is removed too quickly from U25B, then U23 will not be clocked and the instrument will not phase lock. Should the problem occur, add a $100 \,\mu\text{F}$

Æ

INSTRUMENT MODIFICATIONS

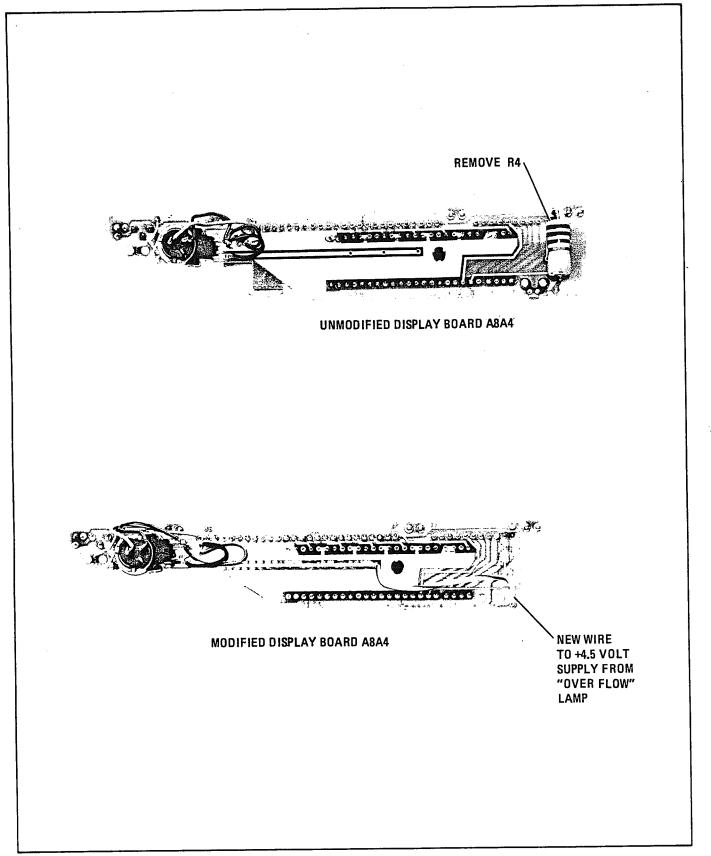


Figure 7-8. A8A4 Counter Display Assembly Modification

capacitor (C27, HP 0160-3877) from the output of U13D (pin 11) to ground.

7-16. Improved Audio Output Level Accuracy (Serial Prefix 1229A)

7-17. On instruments with serial number prefix 1229A, the level of the internal modulation oscillator into the FM system can be increased so that it can turn on the REDUCE FM VERNIER annunciator (to verify its operation) as follows:

- 1. For A11 Fixed-Frequency Modulation Oscillapart (with number Assembly tor 08640-60020) refer to Service Sheet 9. Change A11R7 to 2870 ohms (HP 0698-3151) and change A11R14 to 2610ohms (HP 0698-0085). Perform **Fixed-Frequency** Modulation Oscillator Adjustment in Section V.
- For A11 Variable-Frequency Modulation Oscillator Assembly (Option 001) (with part number 08640-60019) refer to Service Sheet 9A. Change A11R36 to 6190 ohms (HP 0757-0290) and change A11R39 to 2370 ohms (HP 0698-3150). Perform Variable-Frequency Modulation Oscillator Adjustment in Section V.

7-18. A26A1 Power Amplifier and AGC Detector Assembly Improvement (Serial Prefix 1229A)

7-19. On instruments with serial number prefix 1229A and an A26A1 Assembly with part number 08640-60017, level accuracy for narrow pulse widths in AM PULSE mode can be improved by changing Q1 to HP 1853-0015; refer to Service Sheet 13.

7-20. Reduction of RFI Leakage from Front Panel (Serial Prefix 1244A and Below)

7-21. On instruments with serial number prefix 1244A and below, RFI leakage from the front panel can be reduced by adding RFI barriers to the main and fine tune shafts and the output attenuator shaft. The following parts are required:

11

Qty	Description	HP Part No.	
2 1* 1 1 1*	4-40x1/8 Setscrew Braid Ring (Main Tune) Braid Ring (Fine Tune) Retaining Collar Attenuator Shield	3030-0007 8160-0238 8160-0239 08640-20228 08640-00065	
*Order only for serial prefixes 1229A and below			

7-22. Remove A3 RF Oscillator Assembly (see Service Sheet F for procedure) and A1 Output Level Assembly (see Service Sheet A for procedure). Modify and re-install as follows:

A1 Output Level Assembly

- 1. Install gold Attenuator Shield on output attenuator's cursor drive gear bushing. The shield should be cupped toward front panel, and the locating tabs should seat in the cursor locating slots.
- 2. Before re-installing attenuator, apply a small amount of grease (such as PLM grease) to portion of subpanel where Attenuator Shield will rub. This will smooth rotation of vernier and prevent squeaking.
- 3. Re-install attenuator. If cursor drive gear has disengaged, follow the Output Level Knob Adjustment procedure in Section V.

A3 RF Oscillator Assembly

- 1. Install Main Tune Braid Ring on oscillator's FREQUENCY TUNE shaft. If braid appears to be unraveling, apply solder to braid end. With the braid on the shaft, make braid thinner by pinching with pliers; this will ease installation of oscillator.
- 2. Slip Retaining Collar and Fine Tune RFI Braid Ring on FINE TUNE shaft. The braid may also need soldering.
- 3. Re-install RF Oscillator. Check that the green counter time base cable is not pinched under the Oscillator.

Ç

(

3 [

INSTRUMENT MODIFICATIONS

4. Press Fine Tune RFI Braid Ring against the subpanel with the Retaining Collar and secure collar with Setsscrews. Verify operation of the Oscillator as shown in Operator's Checks in Section III.

7-23. A26A4 AGC Amplifier Assembly Improvement (Serial Prefix 1245A and Below)

7-24. On instruments with serial number prefix 1245A and below, the AM bandwidth in the 0.5 to 2 MHz ranges can be improved by modifying the A26A4 AGC Amplifier Assembly (part number 08640-60015). Change C10 (see Service Sheet 12) from $0.027 \ \mu$ F to $0.018 \ \mu$ F (HP 0160-0302).

7-25. On the same instruments, adding R54 825 ohms (HP 0757-0421) between the collector of Q8 and +5.2V will improve the transistor's reliability. Unsolder and lift the collector lead from the board and add the resistor between the collector lead and the circuit board hole.

7-26. Reduction of RFI Leakage From RF Oscillator (Serial Prefix 1246A and Below)

7-27. On instruments with serial number prefix 1246A and below that have excessive RFI leakage from the A3 RF Oscillator Assembly, RFI leakage can be reduced by replacing the RF Oscillator Transistor cap. The new cap is shorter and includes two RFI braid gaskets. The old transistor cap should be replaced with the following parts:

Qty	Description	HP Part No.
1	Cap Transistor	08640-20224
1	Braid Plug	8160-0203
1	Gasket Plug	8160-0233

NOTE

The cap is located on the bottom side of the cylindrical part of the oscillator.

7-28. Replacement A7 FM Shaping Assembly (Serial Prefix 1246A and Below)

7-29. On instruments with serial number prefix 1246A and below, a new (replacement) A7 Assembly will require modification to be compatible with

an A9 Peak Deviation and Range Switch Assembly that does not have coaxial cable A9W1 (see paragraph 7-32). The new A7 Assembly will have coaxial jack A7J1 (see Service Sheets 6 and 7), the original assembly does not.

7-30. Refer to Figure 7-9 and Service Sheet 7. Modify the board as follows:

- 1. Add a wire jumper between the two pads above pins 12 and 13 on board. Coaxial jack A7J1 will not be used.
- 2. The A7 FM Shaping Assembly characteristics must be matched to the RF Oscillator. Perform the Preliminary FM, FM Sensitivity and FM Linearity Adjustments in Section V.

7-31. Replacement A9 Peak Deviation and Range Switch Assembly (Serial Prefix 1246A and Below)

7-32. On instruments with serial number prefix 1246A and below, a new (replacement) A9 Assembly will require modification to be compatible with an A7 FM Shaping Assembly with a 08640-60030⁺ part number (see paragraph 7-28). The new A9 Assembly will have coaxial cable A9W1 (see Service Sheets 6 and 7), the original assembly does not. The modification consists of replacing A9W1 with an insulated wire and adding three capacitors. The following parts are required:

Qty	Description	HP Part No.
1	A9C6 150 pF	0140-0196
1	A9C7 750 pF	0160-3538
1	A9C8 1500 pF	0160-2222

7-33. Refer to Figure 7-10 and Service Sheet 6. Modify the switch as follows:

1. Remove the coaxial cable leads from switch wafer S3C rear and S3B front lug 11. Strip the ends of a 8½-inch length of insulated wire, #24 AWG, color code white-yellow-gray (948), and connect it between wafer S3B front lug 11 and pin 24 of connector A9P1. Solder both ends of wire.

INSTRUMENT MODIFICATIONS

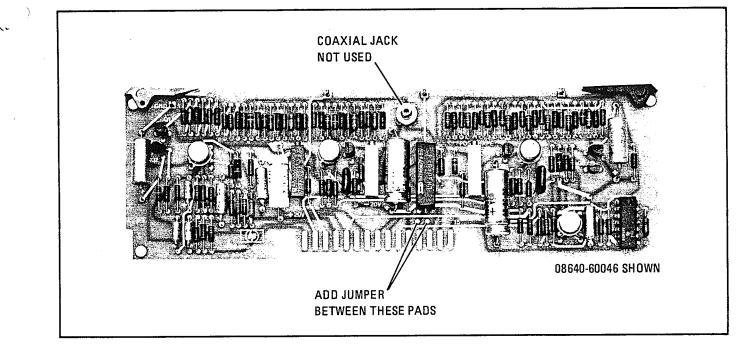


Figure 7-9. A7 FM Shaping Assembly Modification

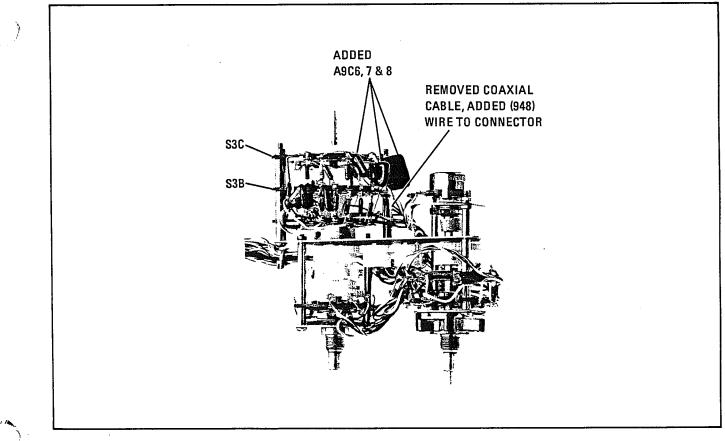


Figure 7-10. A9 Peak Deviation and Range Switch Modification

INSTRUMENT MODIFICATIONS

- Connect A9C8, 1500 pF, between switch wafer S3B front lug 10½ and wafer S3C front/rear lug with the white-yellow (94) wire, bare wire, a 1500-ohm and a 300-ohm resistor. Solder the end of C8 at wafer S3B front lug 10½.
- 3. Connect A9C7, 750 pF, across switch wafer S3B front/rear lug 10 and wafer S3C at the same lug as A9C8. Solder both ends of A9C7.
- 4. Connect A9C6, 150 pF, across switch wafer S3B front/rear lug 9½ and wafer S3C front/ rear lug with two 3000-ohm resistors and a bare wire to the lug on either side. Solder both ends of A9C7.
- 5. Perform the Peak Deviation and Range Switch Adjustment and the Range Switch Adjustment in Section V.

7-34. A10A1 RF Filter Assembly Switch Improvement (Serial Prefix 1246A and Below)

7-35. On instruments with serial number prefix 1246A and below, the reliability of the slide-bar switches can be improved by modifying the A10A1 Assembly. The modification consists of replacing the plastic slide-bar switch clamp with one made of aluminum. Replacement requires the use of special fixtures and tools and should be performed by Hewlett-Packard. Contact your local HP office for more information.

NOTE

The plastic slide-bar switch clamp is not available for replacement. If found to be defective, it must be replaced by an aluminum clamp.

7-36. A8A1 RF Scaler Assembly Improvement (Serial Prefix 1249A)

7-37. On instruments with serial number prefix 1249A and an A8A1 Assembly with an 08640-60041 part number, low level triggering in EXT mode can be improved by increasing isolation between the internal and external signal paths. Refer to Service Sheet 18 and Figure 7-7 and add C7 0.01 μ F (HP 0160-3879) from the junction of R2 and CR5 to circuit board ground.

7-38. A5 FM Amplifier Assembly Improvement (Serial Prefix 1251A and Below)

7-39. On instruments with serial number prefix 1251A and below and an A5 Assembly with an 08640-60029 part number, spurious oscillations may occur in the FM system in the FM OFF mode. To prevent this, refer to Service Sheet 6 and add C9 430 pF (HP 0160-0939) from pin 7 on the circuit board connector to circuit board ground.

7-40. A8A2 Counter/Lock Board Assembly Improvement (Serial Prefix 1251A and Below)

7-41. On instruments with serial number prefix 1251A and below and an A8A2 Assembly with an 08640-60027 part number, the pulse width into the Stall Counter may be wide enough to overlap the clock input. The Stall Counter will then count for 10 clock pulses instead of 9 and the instrument will phase lock to a frequency that is one count higher than the indicated count. To prevent this, refer to Service Sheet 20, change C12 to 100 pF (HP 0160-3466) and remove R48 (196 ohms) and in its place add L2, 15 μ H (HP 9100-1620).

7-42. Front Panel Meter M1 Replacement (Serial, Prefix 1251A and Below)

7-43. When replacing the panel meter for instruments with serial number prefix 1251A and below, the front panel will also have to be changed to one with a hole which accommodates the front panel zeroing. The hole already exists in the sub-panel.

To replace the meter and front panel, order a current panel meter (HP 1120-0539) and front panel (HP 08640-00063) and proceed as follows:

- 1. Remove top and bottom covers, top trim strip, front window, and all knobs, nuts, and washers that secure lower half of front panel. The RF OUTPUT connector is most easily removed from behind the sub-panel. Avoid forcing modulation oscillator's frequency dial cursor disk (Option 001 only); gently work it along the shaft.
- 2. Replace front panel with new one. Replace the nuts and washers that secure the connectors and switches. Replace the FINE TUNE, FRE-QUENCY TUNE, RANGE, PEAK DEVIA

TION, and MODULATION FREQUENCY (except Option 001) knobs.

- 3. Remove A4 Meter/Annunciator Drive Assembly.
- 4. Remove A8 Counter/Lock Assembly by removing four corner screws and three RF connectors on bottom of assembly. Use the special wrench provided with instrument to remove the two screw-on connectors.
- 5. Remove A6 Annunciator Assembly by unplugging miniature 8-pin connector A6P1 and removing two screws on front of meter support molding.
- 6. Remove meter by gently pressing frontward on support molding and lifting meter up and out. Remove the two meter leads.
- 7. Connect the meter leads to new meter. (The white lead goes to the "+" terminal.) Insert meter, taking care not to scratch meter face. Check that the solder lugs on the meter terminals do not short to each other or to the chassis.
- 8. Replace A6 Annunciator Assembly, A8 Counter/Lock Assembly, and A4 Meter/ Annunciator Drive Assembly.
- 9. For the Option 001 modulation oscillator, carefully install the dial and check the oscillator's output with a counter to make sure that the dial cursor disk gear is meshed in the correct cogs. Install the modulation oscillator RANGE and vernier knobs; tighten the vernier knob first.
- 10. Install the AUDIO OUTPUT LEVEL knob and check its scale accuracy with an external meter by comparing the AM OUTPUT level at 1 kHz into 600 Ω with the scale indication. Adjust the knob position until the scale is accurate to within ±20% for all markings.
- 11. Perform the Meter Adjustment procedure in Section V. The offset adjustments may be omitted.

- 12. Perform the Output Level Knob Adjustment procedure in Section V; the gears, however, should not need adjustment.
- 13. Install the covers, trim strip, and front window.

7-44. A26 AM/AGC and RF Amplifier Assembly Improvement (Serial Prefix 1303A and Below)

7-45. On instruments with serial number prefix 1303A and below, operation of the AM and pulse modulation circuits can be improved by making the following changes. The changes are recommended at time of service or repair. Refer to Service Sheets 12 and 13.

- 1. To improve AM bandwidth on an A26A4 AGC Amplifier Assembly with part number 08640-60014), change R13 and R15 to 14.7 $k\Omega$ (HP 0698-3156) and change R22 to 1.78 $k\Omega$ (HP 0757-0278).
- 2. To improve RF pulse shape (specifically, to reduce the 90-100% rise time) on an A26A4 AGC Amplifier Assembly with part number 08640-60014, change R41 and R42 to 100 k Ω (HP 0757-0465).
- 3. To improve general circuit reliability on an A26A2 AM Offset and Pulse Switching Assembly with part number 08640-60015, change CR9 to HP 1901-0539.

7-46. A26A4 AGC Amplifier Assembly Improvement (Serial Prefix 1310A and Below)

7-47. On instruments with serial number prefix 1310A and below, and with an A26A4 Assembly that has an 08640-60014 or 08640-60015 part number, AM noise performance will be improved by changing C14 from 220 pF to 0.1 μ F (see Service Sheet 12). The correct part to install is HP 0160-0576. The new capacitor has 0.1-inch lead separation, and the leads should be carefully formed to fit into the present 0.2-inch spacing of the printed circuit board. This change is recommended at time of service or repair.

INSTRUMENT MODIFICATIONS

7-48. A10A2 RF Divider Assembly Improvement (Serial Prefix 1313A and Below)

7-49. On instruments with serial number prefix 1313A and below, subharmonic rejection can be improved if the fourth RF divider is wired so that it is off when the RF output is taken from the third divider. Refer to Figure 7-11 and Service Sheet 11 and proceed as follows:

- 1. Remove top cover of instrument (see Service Sheet F for procedure).
- 2. Remove 14 4-40 pan-head screws that secure cover of A10 Divider/Filter Assembly casting (screws are marked "*" on cover). Note that the two center screws are longer than the others.
- 3. Remove cover from casting.

- 4. Remove 12 4-40 pan-head screws that secure A10A2 RF Divider Assembly. Remove A10A2 and riser board (A10A3) by lifting at the riser.
- 5. Solder a 1/2-inch length of insulated wire between pin 3 of U18 and the end of R16 (5.11 k Ω) that is nearest U18. Refer to Figure 7-11.
- 6. Replace A10A2 and A10A3 and check that there is no output from U18 (pin 1 or 13) when in the 32 to 64 MHz range. Use a high impedance 50 MHz oscilloscope.
- 7. Continue reassembly of the instrument and check for proper operation on all frequency ranges.

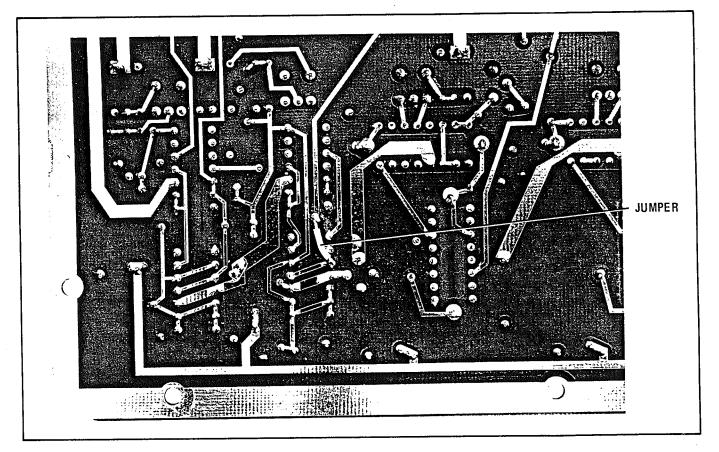


Figure 7-11. A10A2 RF Divider Assembly Modification

7-50. Power Supply Improvement (Serial Prefix 1313A and Below)

7-51. On instruments with serial number prefix 1313A and below, the reliability of the voltage regulators in the power supply can be improved by adding pre-loading resistors as follows (refer to Service Sheets 22 and 23):

- 1. On A18 -5.2V Regulator and Fan Driver Assembly (with part number 08640-60004), add R19 2610 ohms (HP 0698-7246) between pins 5 and 6 of U1.
- 2. On A20 +5.2V and +44.6V Regulator Assembly (with part number 08640-60005), add R27 2610 ohms (HP 0698-7246) between pins 5 and 6 of U1.
- 3. On A22 +20V and -20V Regulator Assembly (with part number 08640-60006), add R26 10 k Ω and R27 to 10 k Ω (HP 0698-7260), between pins 5 and 6 of U2 and U1 respectively.

NOTE

The resistors are most easily installed by carefully lifting the leads (pins 5 and 6) of the integrated circuits out of the holes, inserting a wire or test-point type of pin in the holes, and then soldering both the resistor and integrated circuit leads to the pins.

7-52. A10A2 RF Divider Assembly Improvement (Serial Numbers 1316A00464 and Below)

7-53. On instruments with serial numbers 1316A00464 and below and an A10A2 Assembly with an 08640-60023 part number, C5 1000 pF (from collector of Q3 to ground) can cause spurious signals from 500-1000 MHz. To prevent this, remove C5 (see Service Sheet 11).

7-54. Improved Audio Output Level Flatness (Serial Prefixes 1244A through 1316A)

7-55. On instruments with serial number prefixes 1244A through 1316A, changing R1 (see Service Sheet 9 or 9A) requires that the AUDIO OUTPUT LEVEL knob be changed; order part number HP 0370-2387 (1V knob for standard oscillator) or HP 0370-2381 (3V knob for Option 001 oscillator). Perform the modulation oscillator adjustment in Section V.

7-56. A8A4 Counter Display Assembly Improvement (Serial Prefixes 1323A and Below)

7-57. On instruments with serial number prefix 1323A and below, and an A8A4 Assembly with an 08640-60025 part number, if the time base UNCAL lamp burns out, the time base will not be calibrated. To prevent this, refer to Service Sheet 20 and add R5 46.4 k Ω (HP 0698-7276) across the leads of UNCAL lamp DS1. To accommodate R5, change R3 to a smaller size 51.1 k Ω resistor (HP 0698-7277).